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RESEARCH REPORT

Discrete-State and Continuous Models of Recognition Memory:
Testing Core Properties Under Minimal Assumptions

David Kellen and Karl Christoph Klauer
Albert-Ludwigs-Universitat Freiburg

A classic discussion in the recognition-memory literature concerns the question of whether recognition
judgments are better described by continuous or discrete processes. These two hypotheses are instantiated
by the signal detection theory model (SDT) and the 2-high-threshold model, respectively. Their com-
parison has almost invariably relied on receiver operating characteristic data. A new model-comparison
approach based on ranking judgments is proposed here. This approach has several advantages: It does not
rely on particular distributional assumptions for the models, and it does not require costly experimental
manipulations. These features permit the comparison of the models by means of simple paired-
comparison tests instead of goodness-of-fit results and complex model-selection methods that are
predicated on many auxiliary assumptions. Empirical results from 2 experiments are consistent with a
continuous memory process such as the one assumed by SDT.
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One of the most prominent debates in the recognition-
memory literature (for a review, see Malmberg, 2008) concerns
the distinction between continuous and discrete (threshold)
processes and the circumstances under which each is expected
to occur. Several measurement models assuming continuous
and discrete processes (or a mixture of both) have been pro-
posed and discussed in the literature (e.g., Parks & Yonelinas,
2009; Province & Rouder, 2012; Wixted, 2007; Yonelinas &
Parks, 2007). Continuous models such as signal detection the-
ory (SDT; Swets, Tanner, & Birdsall, 1961) assume that a latent
familiarity variable underlies recognition-memory judgments.
Examples of discrete processes are the detection processes in
the two-high-threshold model (2HT; e.g., Broder & Schitz,
2009) or the recollection process in the dual-process SDT
model (e.g., Yonelinas & Parks, 2007).

Attempts to discriminate between discrete and continuous pro-
cesses have almost invariably relied on the shape of receiver
operating characteristics (ROC) functions, which plot pairs of hit
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and false-alarm rates (recognition rates of studied and nonstudied
items, respectively) across different response-bias conditions while
assuming that memory discriminability is constant (but see Van
Zandt, 2000). Different response-bias conditions are implemented
by varying the base rate of old and new items in the test phase or
alternatively via response-outcome payoff manipulations. Another
way of obtaining ROCs is via confidence-rating responses (see
Van Zandt, 2000). Because confidence-rating judgments can be
collected in a very easy and efficient manner, confidence-rating
ROCs constitute the vast majority of ROC data reported in the
literature (for a review, see Yonelinas & Parks, 2007).

This reliance on ROC data to compare models and/or determine
the nature of particular memory judgments has been shown to be
rather problematic and often produce noninformative outcomes
(e.g., Broder & Schiitz, 2009; Krantz, 1969; Luce, 1963; Malm-
berg, 2002; Province & Rouder, 2012; Rouder, Province, Swag-
man, & Thiele, 2013). This situation encourages the development
of alternative experimental approaches that produce more diagnos-
tic empirical evidence.

In the present article, we propose an alternative experimental
method for comparing discrete-state and continuous processes.
This method, based on ranking judgments, is very simple and has
several advantages as it does not require (a) any sort of parameter
estimation and model fitting, (b) distributional assumptions, (c)
exhaustive experimental manipulations, or (d) complex model-
selection methods. Although we focus on the comparison between
the 2HT and SDT models, which have received a considerable
amount of attention in the recent literature (Broder & Schitz,
2009; Dube & Rotello, 2012; Dube, Starns, Rotello, & Ratcliff,
2012; Kellen, Klauer, & Broder, 2013; Province & Rouder, 2012),
this method can be adjusted to evaluate other models such as the
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dual-process model (Yonelinas & Parks, 2007). This article is
organized as follows: First, the 2HT and the SDT models are
described in the context of ROC data as well as multiple-
alternative forced-choice judgments. This is followed by a presen-
tation of the new method, along with two experiments implement-
ing it.

Measurement M odels of Recognition Memory:
SDT and 2HT Models

The SDT model assumes a continuous memory process, often
termed familiarity, to describe the individuals’ decisions on the
basis of memory information. Both old and new items evoke some
degree of familiarity, with separate familiarity distributions for old
and new items. The ability to discriminate between the two kinds
of items is determined by the overlap between the two distribu-
tions. According to SDT, an item’s familiarity is compared with an
established response criterion, denoted by parameter 7. If an item’s

familiarity is larger than the criterion, the response “old” is given;
if the familiarity is lower than the criterion, then the response
“new” is given instead. The familiarity distributions are usually
assumed to be Gaussian, with mean and standard-deviation param-
eters {po, 0.} and {w.,,, 0.} for old and new items, respectively,
with g, = ., 0, > 0, and o, > 0. Without loss of generality, .,
and o, are fixed to 0 and 1, respectively. A visual depiction of the
SDT model is given in Figure 1. Note that the use of the Gaussian
distribution is somewhat arbitrary, and other distributional as-
sumptions could have been used instead. According to the (Gauss-
ian) SDT model, the probabilities of an “old” response for an old
or a new item, respectively, are given by

P(“old" [old) = fD( “°07 T), 1)
P(“Old” | new) = B(—1). @
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Figure 1. The SDT and 2HT models and their implied binary-response receiver operating characteristics
(ROCs). The gray diagonal lines in the graphs on the right depict chance performance.



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

RANKING AND RECOGNITION 3

where ®(-) is the cumulative distribution function of the standard
normal distribution.

The 2HT is a discrete-state model. It assumes that memory
judgments are based on “detect” and “guessing” states. According
to the 2HT model, the probabilities of an “old” response for an old
or a new item, respectively, are given by

P(“Old”|old) = Dy+ (1 — Dy)g, (3)
P(“Old” | new) = (1 — D,)g. 4)

When presented at test, an old item is detected with probability D,
invariably leading to an “old” response. If the item’s old or new
status is not detected, with probability (1 — D,), then a guessing
state is entered: The status of the item is guessed, with response
“old” occurring with probability g and response “new” with prob-
ability (1 — g). At test, a new item is detected with probability D,
invariably leading to response “new.” Similar to the case of old
items, when detection fails with probability (1 — D,)), a guessing
process is engaged, with the response “old” occurring with prob-
ability g and the response “new” with probability (1 — g). The
visual depiction of the 2HT model is also provided in Figure 1.
The 2HT model serves several distinct roles in the literature:

1. It is a model of recognition-memory judgments that
makes specific predictions (e.g., Province & Rouder,
2012) that can be contrasted with the predictions by other
candidates such as the SDT model.

2. It can represent the recollection processes of dual-process
models assuming a mixture of discrete and continuous
processes. These dual-process models are often tested in
cases where only one process is assumed to underlie
performance or one process is expected to be selectively
influenced. When it is assumed that (discrete) recollec-
tion is the process underlying above-chance performance
a model that is equivalent to the 2HT model (or a re-
stricted version of it, where D, = 0) is being postulated
(e.g., Parks & Yonelinas, 2009).

3. The 2HT model is also used as tool that provides a rough
characterization of recognition-memory data in terms of
sensitivity and bias. In the latter case, the model produces
accounts that are often in accord with the SDT model
(e.g., Broder, Kellen, Schiitz, & Rohrmeier, 2013), and
the differences between the two models are downplayed
in favor of other attributes such as tractability and gen-
eralizability (for a recent discussion, see Batchelder &
Alexander, 2013; Dube, Rotello, & Pazzaglia, 2013; Paz-
zaglia, Dube, & Rotello, 2013).

In the present work, we focus on the first two cases and thus on the
2HT model as a general test bed for discrete-state processes,
whether as a stand-alone model or as an instantiation of the
recollection process in the dual-process model.

Binary-Response and Confidence-Rating ROC Data

As previously mentioned, these models of recognition-memory
judgments have been compared almost invariably by means of

ROC data. Although ROCs can be obtained in two different
ways—namely, via binary responses or confidence ratings—these
two types of ROCs do not have the same diagnostic value for
distinguishing between the 2HT and SDT models.

Binary-response ROCs are obtained by manipulating response
bias (e.g., the tendency to respond “old”) across different test
phases, in which different base rates of old and new items (e.g.,
90% old items and 10% new items) or outcome payoff matrices
(e.g., 10 points per correct “old” response and 5 points per correct
“new” response) are implemented. It is assumed that response bias
manipulations do not affect memory discriminability, selectively
influencing response-criteria/guessing processes (captured by pa-
rameters T and g). The SDT and the 2HT models make different
predictions, with the SDT model predicting curvilinear ROCs and
the 2HT model linear ROCs (see Figure 1).

Confidence-rating ROCs are simpler to obtain, as they do not
require the collection of responses across different response-
bias conditions. Instead of plotting the hit and false-alarm rates
obtained across conditions, the cumulative proportions obtained
across a confidence-rating scale (e.g., from 1 = surenewto 8 =
sure old) for old and new items are used instead. The SDT
model accommodates the use of confidence ratings instead of
binary responses in a seamless manner, as confidence ratings
can be described by simply assuming a set of ordered response
criteria along the evidence—familiarity axis. As in the case of
binary responses, the SDT model predicts curvilinear
confidence-rating ROCs. However, the same does not hold for
the 2HT model, which requires the specification of state-
response mapping functions that determine how the detection
and guessing states are mapped onto a confidence-rating scale
(e.g., Broder & Schitz, 2009; Klauer & Kellen, 2010; Malm-
berg, 2002; Province & Rouder, 2012). Contrary to the case of
binary-response ROCs, the 2HT model is able to account for
both curvilinear and linear ROCs, with curvilinear ROCs being
predicted when detect states are not deterministically mapped
onto maximum-confidence responses. This ability compromises
any attempt to dismiss discrete-state accounts on the basis of
confidence-rating ROC curvilinearity.

Because of the limitations of confidence-rating ROCs, recent
work has compared discrete and continuous models—in particular,
the SDT and the 2HT models—on the basis of binary-response
ROCs (e.g., Broder & Schitz, 2009; Dube & Rotello, 2012;
Kellen, Klauer, & Bréder, 2013). However, despite their diagnos-
tic value, individual ROCs cannot be easily obtained via response-
bias manipulations as they require multiple study—test phases per
individual. Furthermore, to produce diagnostic binary-response
ROCs (i.e., ROCs whose shape can be reliably assessed), the
response-bias manipulation used by the experimenter needs to
produce large differences in response bias. Such an outcome is not
easy to accomplish given that individuals are notably reluctant to
change their response biases (e.g., Cox & Dobbins, 2011), and it is
not entirely clear whether such changes also affect memory dis-
criminability (Van Zandt, 2000). Finally, the noisiness of the data
is such that differences in model flexibility still have a nonnegli-
gible weight in model-performance comparisons (see Kellen et al.,
2013). Overall, the problems associated with the different types of
ROCs indicate the desirability of alternative methods to assess the
nature of memory processes.
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First- and Second-Choices in Multiple-Alternative
For ced-Choice Data

An alternative to ROCs was introduced in the recognition-
memory literature by Parks and Yonelinas (2009), who focused on
first and second choices in a four-alternative forced-choice (4AFC)
task. This approach was originally proposed in the seminal work
on SDT by Swets et al. (1961) in which restricted versions of the
SDT and 2HT models (with o, = 1 and D,, = 0) were compared.
In each trial of Parks and Yonelinas’ task, one old item and three
new items were presented, and individuals were instructed to
choose the item they believed to have previously studied. In some
of the trials, individuals were additionally requested to provide a
second choice among the three remaining alternatives. Across two
experiments concerning single-item and pair recognition, Parks
and Yonelinas evaluated the accuracy of first choices and the
accuracy of second choices conditional on incorrect first choices,
particularly their correlation across participants. Parks and Yoneli-
nas argued that according to the SDT model, increases in first
choice accuracy should always be accompanied by an increase in
(conditional) second-choice accuracy, whereas the dual-process
model predicted no correlation in cases where only recollection is
expected to drive above-chance performance, as in the case of pair
recognition. A simulation study corroborating their predictions
concerning the SDT and dual-process model was also reported (see
Parks & Yonelinas, 2009, supplemental materials).

The claims of Parks and Yonelinas (2009) were questioned by
Kellen and Klauer (2011), who showed that the observed first- and
second-choice accuracy could be accounted for by the SDT model
as well as by the 2HT model because the data fell inside each
models’ prediction space. The prediction space of the SDT and
2HT models for first- and second-choice accuracy in a 4AFC task
are depicted in Figure 2 along with Parks and Yonelinas’s data. As
can be seen, the vast majority of data points fall in the regions that
can be accounted for by both the SDT and the 2HT models. Kellen
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and Klauer also estimated parameters (e.g., i, and o,,) on the basis
of the observed first- and second-choice accuracies. The individual
parameter estimates obtained (as well as their correlations) across
data sets were consistent with the ones usually obtained with ROC
data, implying that the models account for the data by means of
reasonable parameter values. Kellen and Klauer’s results show that
Parks and Yonelinas’s approach is unlikely to provide diagnostic
data allowing one to distinguish between continuous and discrete-
state models because of the large overlap of 2HT and SDT models
in this task. As will be shown in the next section, diagnostic data
can be obtained in this framework, if a few appropriate changes are
made.

Ranking Judgments

The theoretical work of lverson and Bamber (1997) articulates
the intimate relationship between different forced-choice tasks and
ROC data. One of the tasks discussed by Iverson and Bamber is the
ranking task (e.g., Block & Marschak, 1960; Thurstone, 1931), in
which items are ranked according to participants’ belief that the
items were previously studied (Rank 1 being attributed to the item
judged as the most likely to be old). This task is formally equiv-
alent to Parks and Yonelinas’ (2009) forced-choice task (i.e.,
model equations are exactly the same), with first- and (uncondi-
tional) second-choice accuracy corresponding to the probabilities
of Rank 1 and Rank 2 responses to old items, respectively. One
practical advantage of the ranking task is that Rank 2 responses to
old items can be potentially observed in any trial, whereas in Parks
and Yonelinas’s task, second-choice accuracy could only be po-
tentially observed in a subset of trials.

We now characterize the SDT and 2HT models in the context of
the ranking task (which subsumes Parks and Yonelinas’s, 2009,
task). We later show that the data originating from an extension of
this task provide a simple nonparametric test to discriminate be-
tween these two models. First, consider a K-alternative ranking
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Figure2. Predictions of the signal detection theory (SDT) and two-high-threshold (2HT) models for Parks and
Yonelinas’s (2009) four-alternative forced-choice task. In both panels, the lines delimit the regions predicted by
the models. The left panel plots first-choice accuracy against second-choice accuracy. The gray area represents
the inadmissible region (as first- and second-choice accuracy cannot sum to more than 1). The right panel plots
first-choice accuracy against conditional second-choice accuracy. Note that chance performance in conditional
second-choice accuracy is 1/3 in this task. The circles in both panels correspond to the individual data from the
item memory condition in the study of Parks and Yonelinas.
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task, in which participants are presented with sets of K items, one

previously studied and K — 1 nonstudied, and their task is to rank

the items according to the likelihood with which they are believed

to have been previously studied. Denote the probability of the old

item being assigned rank i among K alternatives by ;. Further-
2

more, let c, = denote the conditional probability of the old

item being assigned 1Rank 2 given that it was not assigned Rank 1.
We show that the continuous SDT model predicts that c, increases
as a function of the strength of old items in memory, whereas the
discrete 2HT model predicts c, to be constant as a function of item
strength.

For the case of SDT, let f, and F, denote the density and
cumulative distribution functions of the old-item familiarity dis-
tribution (parameterized by a parameter w), with f and F corre-
sponding to the respective functions for the new-item familiarity
distribution. The probability ; of the old item being assigned rank
i among K alternatives is given by

m = ('f_ll ) J1.00F 00— Foay . (8)

According to the SDT model, m; simply corresponds to the prob-
ability that the old item is the ith most familiar item among the K
alternatives.

Let us now consider the predictions of the SDT model concern-
ing ¢, and memory strength. The following theorem describes the
conditions under which c, increases with increasing item strength
w. These conditions refer to the cumulative distribution function
F, of the old-item distribution. Specifically, a function H, is
derived from the distribution function, and the theorem states that
a monotonicity property of H,,, where it is present, entails that c,
is monotonically increasing as a function of . For each familiarity

d
value z, define H (2) as a_F’*(Z) X Fu(z)’l. In the supplemental

materials, the following theorem is proved:

Theorem. If H, (2) is monotonically increasing in z for all .,
then ¢, is monotonically increasing in .

In the supplemental materials, we show that the monotonicity
condition involving H,, is satisfied for the normal (i.e., Gaussian)
familiarity distribution usually postulated by SDT models. The
theorem now vyields that the SDT model predicts c, to increase
with increasing . But the theorem is, in fact, much more general:
In the supplemental materials, we also show that this same pre-
diction is shared by many alternative continuous models defined
by familiarity distributions other than the normal distributions,
such as the exponential, ex-Gaussian, and gamma distributions,
among others. In other words, the monotonicity of c, is a shared
property of most reasonably regular continuous models that have
been considered, and it is not tied to the normality assumptions of
the classical SDT model.

We now turn to the 2HT model: Again, let D, be the probability
of a studied item being successfully detected. Now, consider a
function &(i) denoting the probability (conditional on the absence
of old-item detection) of the studied item being attributed rank i
among K alternatives on the basis of guessing among nonexcluded
alternatives. Note that &(i) comprises cases in which new items are
detected as new (e.g., with probability D,)) and thus excluded from
the set of alternatives. Also, note that we do not need the assump-

tion that the probabilities of detecting new items are independent.
The stochastic relation of distractor detection is immaterial for the
present purposes and is therefore left unspecified; that is, we just
refer to &(i). According to the 2HT model, m; is given by

Do+ (1 — Dy)&(i), ifi=1

(1 - Dy&(i), if2=i=K
The 2HT model states that , corresponds to the probability that
the old item is detected as old, plus the probability of the old item
being attributed Rank 1 via guessing among nonexcluded alterna-
tives. The probability of the old item being attributed any rank
larger than 1 implies the failure of old-item detection and is solely
dependent on the guessing among nonexcluded alternatives that
takes place in the absence of old-item detection.

Like the SDT model, the 2HT model also makes predictions
regarding the relationship between c, and memory strength.

Proposition. Let Dy and D§ represent the probabilities of
detecting two different types of studied items (e.g., weak and
strong items). Also, assume that there is a common set of distrac-
tors that is used for both types of studied items with &(i) being a
function of guessing and distractor detection. Then the equality
¢y = ¢ holds for 0 = DY, Dj = 1.

Proof. It is easy to see that ¢, = £(2)/ D, £(i), which means
that c, is independent of the value taken by D,

The SDT model and the 2HT model establish distinct hypoth-
eses (Hs) regarding the value of c, for weak and strong items. The
SDT model (Hspt) expects ¢, to be larger for strong items than for
weak items, whereas the 2HT model (H,+) expects c, to be the
same for both types of items. By adjusting and extending the
experimental approach proposed by Parks and Yonelinas (2009),
one is able to test the 2HT and SDT models under rather mini-
malistic assumptions, as no distributional assumptions have to be
made for the SDT model and no assumptions regarding distractor
detection have to be made for the 2HT model. The predictions of
the two models are reduced to a simple order-restricted hypothesis
test, precluding the need of model fitting or the use of complex
model-selection methods. In the next section, we report two new
experiments that evaluate c, values for weak and strong items.

Experiments 1 and 2

The following two experiments tested the above-stated hypoth-
eses concerning ¢, by means of a study-repetition manipulation.
Given their similarity, the two experiments are reported together.
In these experiments, participants studied a single word list com-
posed of weak (words presented once) and strong items (words
presented three times) intermixed. In Experiment 1, the test phase
consisted of a four-alternative ranking task. In Experiment 2, a
three-alternative raking task was used instead, along with a payoff
scheme contingent on the ranking of the old item. There were also
differences in the repetition scheme used in the study phase: In
Experiment 1, the presentation order was random, but constrained,;
each third of the study list comprised a single presentation of the
strong items randomly intermixed with weak items. In Experiment
2, the presentation of words was completely random. The differ-
ences in Experiment 2 were introduced for several reasons: The
repetition scheme was relaxed to be equivalent to the one used in
Province and Rouder’s (2012) experiments (Jeffrey N. Rouder,
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personal communication, May 2, 2013). The number of alterna-
tives in the test phase was reduced to make the task less demanding
for the participants while increasing the number of overall test
trials. The payoff scheme was introduced to further encourage
participants to assign ranks to the different alternatives in a way
that closely reflects their memory judgments.

Method

Participants. In Experiment 1, 22 individuals (15 university
students; M, = 25.23 years, SD = 5.66, range: 19-41 years)
served as participants; in Experiment 2, 23 individuals (17 univer-
sity students; M, = 25.30 years, SD = 4.94, range: 21-40 years).
In exchange for their participation, participants in Experiment 1
received €3.5. Participants in Experiment 2 received between €3.5
and €5, depending on their performance. Each participant was
tested individually in sessions of approximately 35 min.

Design and procedure. During the study phase, words were
presented in a black Arial bold font (letters were all capitalized, 1.7
cm high) against a grey background in the center of a 50.93 X
28.63-cm LCD screen. Participants sat at approximately 60 cm
away from the screen. In Experiment 1, 150 words (75 weak and
75 strong) were presented for 600 ms each (100-ms interstimulus
interval). In Experiment 2, 270 words (135 weak and 135 strong)
were presented for 1,200 ms each (100-ms interstimulus interval).
Weak and strong words were presented once and thrice, respec-
tively. For each participant, a randomly generated word list was
presented in the study phase. The repetition scheme for strong
words differed across experiments, as already described. The test
phase started immediately after all items were presented. The
presentation of old items in the test phase was randomized anew.

In each trial of the test phase, participants were shown a set of
items, one being old and the remaining new. The new items
presented along with each old item were randomly selected for
each participant. In Experiment 1, the four alternatives were placed
in a2 X 2 arrangement in the center of the screen. In Experiment
2, the three alternatives were placed side by side in the middle of
the screen. The position of the old item was randomly determined.
Participants were informed of this composition and were requested
to rank the items according to their belief that they were previously
studied (with Rank 1 assigned to the item the believed to be the
one most likely to have been previously studied). As in Kellen et
al. (2012), ranks were assigned to the words by clicking on them

Experiment 1

with the mouse (each word was embedded in a rectangle delimit-
ing the clickable area). The rank assignment was only registered in
the screen when the mouse button was released. The first word that
was clicked received Rank 1, the second word clicked received
Rank 2, and so forth. A number corresponding to the current rank
of the item appeared above the word. Participants could also
deselect items, which removed their rank and updated the remain-
ing ranks accordingly. Participants could only proceed to the next
trial after clicking a button at the bottom of the screen confirming
the attributed ranks. Another button at the bottom of the screen
deleted all assigned ranks. Figure 3 illustrates test trials in Exper-
iments 1 and 2. To familiarize participants with the task, there was
a tryout trial accompanying the test-phase instructions, which
participants could repeat as often as they wished before starting
with the test trials. In Experiment 2, participants were informed
that their final payment would be partly based on their perfor-
mance. They would receive 1 point if the old item was assigned
Rank 1 and lose 2 and 3 points if it was assigned Ranks 2 and 3,
respectively. The total number of points determined the final
payment that could vary between a fixed minimum of €3.5 and €5.
No feedback was provided during the test phase. After finishing
the test phase, participants were thanked and debriefed.

Materials. Words were sampled from a selection of words
from Lahl, Goritz, Peitrowsky, and Rosenberg (2009), ranging
from four to eight letters in length. According to the ratings
obtained by Lahl et al., the words were all of medium valence
(ranging from 3.50 to 6.50 on an 11-point scale) and low in arousal
(ranging from 0.50 to 4.50 on an 11-point scale). Furthermore, all
words were of approximately equal word frequency, as indicated
by the log frequency ratings obtained for each word via WordGen
(ranging from 0.30 to 2.90; Duyck, Desmet, Verbeke, & Bryshaert,
2004).

Results

In Experiment 1, the average values (standard deviations in
parentheses) of m,, ,, 3, and m, for weak items were, in order,
0.38 (0.08), 0.23 (0.05), 0.21 (0.05), and 0.18 (0.05), whereas for
strong items they were 0.55 (0.15), 0.19 (0.07), 0.14 (0.06), and
0.13 (0.05). In Experiment 2, the average values of ;, ,, and 5
for weak items were, in order, 0.62 (0.11), 0.21 (0.06), and 0.17
(0.07), whereas for strong items they were 0.80 (0.11), 0.12 (0.07),

Experiment 2
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Illustration of ranking trials in Experiments 1 and 2. The numbers on top of the words correspond
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and 0.08 (0.05).* The differences in accuracy () between weak
and strong items was found to be statistically significant in both
experiments with a Wilcoxon test (both ps < .001). Regarding the
critical prediction concerning the individual values of c, for weak
and strong items, the average c¥ values—0.37 (0.09) and 0.55
(0.09) in Experiments 1 and 2, respectively—were smaller than
c3—0.43 (0.09) and .63 (0.10). This difference, depicted in Figure
4, was found to be statistically significant with a Wilcoxon test in
each of the two experiments (smallest V = 65.5, largest p = .02,
one-tailed). This rejection of the null hypothesis suggests that the
results are in accord with the predictions made by the SDT model.

The use of a paired-comparison test like the Wilcoxon test on c,
values is adequate but somewhat nonoptimal because the uncer-
tainty associated to the obtained c, values varies within and across
participants. For example, if , is large then the number of trials
used to estimate 1, is bound to be rather small, leading to a larger
uncertainty regarding c,. This means that the uncertainty regarding
C, is expected to be higher for strong than for weak items. Ignoring
these differences in uncertainty and taking c, values at face value
can lead to losses in statistical power and increase the vulnerability
to outliers. Another aspect concerns the fact that traditional null-
hypothesis testing approaches can overstate the evidence against
the null hypothesis (Wagenmakers, 2007). To overcome these
issues, we also analyzed the data analyzed with a hierarchical
Bayesian model that quantified the relative evidence for the two
hypotheses on the basis of individuals’ response frequencies from
both experiments (Rouder & Lu, 2005; Rouder, Morey, & Pratte,
in press; Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010).
An effect size parameter & captured the differences between c¥ and
¢3 across individuals and experiments such that Hgp+ : 8 > 0 and
Hour : & = 0. The relative evidence for each hypothesis is
quantified by a Bayes factor, which corresponds to the ratio
P(data| HSDT)/P(data| H,,,1)- This ratio is composed of the mar-
ginal likelihood of the data conditional on each model.
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Figure 4. Observed c¥ and c; in Experiments 1 and 2.

Under a unit information prior on & (Kass & Wasserman, 1995),
the estimated Bayes factor was 34.46, which indicates that the data
from both experiments are over 30 times more likely under Hgpr
than H,,r. A Bayes factor of this magnitude is considered to
represent strong evidence in favor of Hgp 1 (Wagenmakers, 2007).
The 95% credibility interval of the posterior & distribution was
[0.32, 2.61]. Similar to the null hypothesis testing approach, the
hierarchical Bayesian modeling indicates that the ¢ were reliably
higher than the c¥, as predicted by the SDT model. A complete
description of the hierarchical Bayesian analysis and its implemen-
tation can be found in the supplemental materials.

General Discussion

In the recognition-memory literature, it is common to test rather
complex models under strong parametric assumptions using ROC
data. More recent modeling approaches are beginning to take into
account other variables such as response times (e.g., Ratcliff &
Starns, 2009). Still, despite the level of sophistication of many of
these models and comparison methods, the discussion of which
model provides the best characterization is still not settled. The
present work follows a rather different approach and abandons the
use of ROC data altogether: The core properties of the models
were used to derive simple predictions for ranking judgments.
These predictions can be tested without distributional assumptions
for the models, without implementing costly experimental manip-
ulations and without the need to use more sophisticated forms of
hypothesis testing than implemented by a Wilcoxon test, let alone
complex model-selection techniques. The results obtained in the
two experiments indicate that a continuous process underlies
recognition-memory judgments, as estimated c, values were larger
for strong items than for weak items.

Relating Ranking Results With Evidence for
Discrete States

The present results are apparently at odds with recent studies
providing evidence for the 2HT model, in particular with Province
and Rouder’s (2012) work showing that individuals’ confidence-
rating responses are consistent with the 2HT’s prediction of con-
ditional independence. This prediction states that behavioral out-
puts (confidence ratings and response times) are only a function of
the discrete memory states generating them but not of the proba-
bility of those states being reached. Province and Rouder’s results
report recognition-memory data in line with conditional indepen-
dence, both at the level of categorical responses and response
times, results that have been subsequently replicated and extended
by Kellen, Singmann, Vogt, and Klauer (in press).

11t is usually assumed that responses in forced choice or ranking tasks
do not manifest any form of spatial bias, an approach that has been recently
criticized in the literature (see DeCarlo, 2012). To evaluate the presence of
any unaccounted spatial bias, we checked whether 1, was affected by the
spatial position of the old item. Median 7, estimates were found to be very
similar across spatial positions (.44, .48, .45, and .47 for the four positions
in Experiment 1 and .72, .71, and .73 for the three positions in Experiment
2), suggesting that spatial bias is absent or negligible in magnitude. Not
surprisingly, no significant differences were found across participants in
both Experiment 1, x?(66) = 74.39, p = .22, and Experiment 2, x*(46) =
48.20, p = .38.



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

8 KELLEN AND KLAUER

One way of integrating the present results with Province and
Rouder’s is to follow Rouder et al.’s (2013) theoretical framework
and assume that the uncertainty in the mapping of detect states
entails that a (small) proportion of detected items can be mapped
on any possible response (e.g., a detected old item can be judged
“new”; see also Krantz, 1969; Luce, 1963). In the case of the
ranking task, this would mean that a detected old item is not
invariably assigned Rank 1, making the 2HT model able to account
for the increases in c,.> Although we cannot discard this account
on the basis of the present data, we find that this relaxation of
2HT’s assumptions is implausible in the case of ranking judg-
ments. In the case of ROC data, it is often plausible that partici-
pants’ attempts to comply with task requirements justifies this
assumption relaxation. For example, the response-bias manipula-
tion used by Dube and Rotello (2012) directly instructed partici-
pants to give certain responses at extreme rates (e.g., respond
“new” 90% of the time) even though the percentage of old and new
items in the test phase was always 50% each, suggesting that some
items detected as old were nevertheless mapped on “new” re-
sponses. In the case of the ranking task, however, it is not clear
what sort of task requirements (explicit or tacit) would lead one to
assign anything other than Rank 1 to detected old items, especially
when there is an explicit payoff scheme encouraging accurate
responding (as in Experiment 2).

Another way to integrate both results is to assume that when
individuals provide confidence-rating judgments, they partition the
evidence/familiarity scale in three regions: two regions with ex-
treme values (very low and very high familiarity), where the status
of the items is considered to have been “ascertained” as old or new,
and another region (between the other two) where the status of the
item is considered uncertain (for a similar proposal, see Malmberg,
2008, pp. 363-364). These regions would then be mapped onto the
confidence-rating scale according to a probability distribution (i.e.,
a state-response mapping function). According to this account,
Province and Rouder’s (2012) results reflect a discrete-state me-
diation in which a continuous familiarity process is made discrete
to engage in the recognition-memory task in an efficient manner
(this also consistent with the notion of task thresholds introduced
by Rouder & Morey, 2009, as well as with the notion of efficiency
discussed by Malmberg, 2008). In particular, participants only
need to maintain two task thresholds in working memory, marking
off the regions with extreme values rather than separate response
criteria for each level of confidence on the confidence-rating scale.
In contrast, discrete-state mediation is not expected to play a role
in the ranking judgments, as they only require the comparison of
the alternatives’ familiarity values, suggesting that ranking judg-
ments provide a more direct evaluation of the memory processes.
It is important to note that ranking judgments are not particularly
resource demanding, as they do not require the simultaneous
comparison of all alternatives and can be obtained from simple
paired comparisons (e.g., Block & Marschak, 1960). It should also
be noted that the simplification or discretization of continuous
(external) information is well known in the judgment and decision-
making literature (e.g., Brandstatter, Gigerenzer, & Hertwig, 2006;
Pachur, Todd, Gigerenzer, Schooler, & Goldstein, 2011), suggest-
ing that the occurrence of a similar phenomenon in the case of
latent mnemonic information is not implausible.

Implications for the Multinomial Processing Tree
(MPT) Model Class

The 2HT model is a prominent member of the MPT model class
(Batchelder & Riefer, 1999). This situation has led some research-
ers to associate the successes and failures of the 2HT model to the
MPT model class as a whole (see Batchelder & Alexander, 2013;
Dube et al., 2013; Pazzaglia et al., 2013). The fact that the 2HT
model fails in the present study bears no weight on the suitability
of the MPT model class, as this class includes models that go
beyond the discrete states assumed by the 2HT model. One such
example is the model proposed by Chechile, Sloboda, and Cham-
berland (2012), which assumes a mixture of states where memory
representation of items in memory can be based on different forms
of explicit, implicit, and fractional storage. An MPT model like the
one proposed by Chechile et al. should have no trouble in account-
ing for the present results.

Tests on the Dual-Process M odel

Although the present work focused on item memory, the ranking
approach can be used to test other kinds of memory judgments
such as source discrimination or associative recognition. In such
cases, the predictions of the 2HT model (or restricted versions of
it, with D,, = D, or D,, = 0) correspond to the predictions made by
the dual-process model in circumstances where recollection is
assumed to be the only process underlying above-chance perfor-
mance (e.g., in associative recognition and source-discrimination;
see Parks & Yonelinas 2009).

Additionally, the study-repetition manipulation can be replaced
by experimental manipulations that are expected to selectively
influence recollection (e.g., context reinstatement; see Koen, Aly,
Wang, & Yonelinas, 2013): Simply note that according to the
dual-process model, m; = R + (1 — R¥(1) and w, = (1 —
R)W(2), with R being the probability of recollection and W (i) the
probability of the old item being the ith most familiar item among
the k alternatives, with W(i) not being a function of R. It is trivial
to see that the proposition stated above for the 2HT model also
holds for the dual-process model (simply replace D, and & with R
and W, respectively). Note that no parametric assumptions (e.g.,
assume Gaussian distributions) whatsoever have to be made for
W(i). Thus, if an experimental manipulation is expected to only
affect recollection, then c, should not be affected by that manip-
ulation. The use of ranking judgments sidesteps the problems
associated with the estimation of recollection on the basis of
confidence-rating ROCs. In particular, it does not lean on the
probably auxiliary assumption that recollection is deterministically
and invariably mapped onto maximum-confidence responses. Any
small violation of this assumption is bound to produce curvilinear
ROCs and distort the measurement of recollection and familiarity.*

2 We thank Jeff Rouder for pointing out this possibility.

3 The equal-variance Gaussian assumption associated to the familiarity
component is also likely to produce distortions. This assumption derives
from the claim that the familiarity process alone produces symmetrical
curvilinear ROCs (Yonelinas & Parks, 2007). However, there are infinitely
many kinds of symmetrical curvilinear ROCs produced by distinct para-
metric forms (Killeen & Taylor, 2004) that can potentially lead to different
results if used instead of the Gaussian assumption.
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Final Remarks

The excessive reliance on ROC data has led to a neglect of
alternative approaches for the study of memory. The present work
shows that there is potential in alternative sources of evidence such
as ranking judgments. Because alternative approaches such as the
one considered here have rarely been explored, it is likely that
further work will reveal new additional tests focusing on different
models and judgments. Given that simple predictions can be de-
rived under fairly weak assumptions, we believe that these tests on
critical properties of models carry greater weight than analyses
comparing complex models predicated on strong and somewhat
arbitrary distributional assumptions by means of complex statisti-
cal techniques and model-selection procedures predicated on many
additional auxiliary assumptions (for a similar view, see Birn-
baum, 2011). Additionally, ranking judgments can also be useful
when considered in combination with other memory judgments
(e.g., confidence ratings), as they provide ways of studying pro-
cesses that so far have been shown to be particularly challenging
to measure and test (e.g., response-criteria variability in SDT; see
Kellen, Klauer, & Singmann, 2012).
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