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Abstract

Multinomial processing tree models have been widely used for characterizing

categorical responses in terms of a finite set of discrete latent states, and a

number of processes arranged serially in a processing tree. We extend the

scope of this model class by proposing a method for incorporating response

times. This extension enables the estimation of the completion times of each

process and the testing of alternative process orderings. In line with previous

developments, the proposed method is hierarchical and implemented using

Bayesian methods. We apply our method to the two-high-threshold model

of recognition memory, using previously published data. The results pro-

vide interesting insights into the ordering of memory-retrieval and guessing

processes and show that the model performs at least as well as established

benchmarks such as the diffusion model.
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Response time is perhaps the most important measure used to investigate1

hypotheses about mental processes in experimental psychology, going back2

to the pioneering work of Franciscus Donders in the nineteenth century (for3

reviews, see Luce, 1986; Jensen, 2006; Townsend & Ashby, 1983; Van Zandt,4

2002). From a data-analytic perspective, this predominance has raised im-5

portant challenges: For instance, response time distributions are positively6

skewed, with longer tails on the right sight of the probability density function7

than on the left side. Moreover, reaction-time means and variances are often8

found to be linearly related (Wagenmakers & Brown, 2007). These two fea-9

tures alone are enough to see that response times do not mesh well with the10

general class of statistical linear models traditionally used to analyze data.11

As a response to this challenge, several approaches have been developed,12

which can be roughly divided into two research strands: One has focused13

on fitting response-time data to a suitable parametric distribution (e.g., the14

ex-Gaussian distribution; Matzke & Wagenmakers, 2009) in order to pro-15

vide economical summaries of the data in terms of a few parameters (e.g.,16

Schmiedek, Oberauer, Wilhelm, Süß, & Wittman, 2007; for an overview, see17

Balota & Yap, 2011). The second research strand, which is quite active to18

this date, instead focuses on the development of mathematical models as19

psychological accounts for the data in terms of specific mental processes that20

unfold across time (e.g., Brown & Heathcote, 2008; Ratcliff & Rouder, 1998;21

Townsend & Nozawa, 1995; for reviews, see Luce, 1986; Townsend & Ashby,22

1983; Schweickert, Fisher, & Sung, 2012; Van Zandt, 2002).23

Beyond response times, another widely applicable tool for the study of24

mental processes is given by the class of multinomial-processing tree models25

(MPT models; Riefer & Batchelder, 1988). MPT models characterize cat-26

egorical (frequency) data in a given paradigm by postulating a finite set of27
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latent states. For each item type, the observed responses are the outcome28

of a mixture of the different latent states and associated state-to-response29

mappings. The probability of each state being reached is generated from30

a processing tree, the edges of which represent the outcomes of different31

processes. MPT models are usually tailored to a particular experimental32

paradigm, with trees specifying the most important processes believed to be33

involved in the generation of responses. The family of process-dissociation34

models (Jacoby, 1991) used in many lines of psychological research (Klauer,35

Dittrich, Scholtes, & Voss, 2015) is one prominent member of the MPT model36

class among many others.37

Figure 1 illustrates another simple and well-known MPT model, the two-38

high-threshold model (2HT) for recognition memory (Snodgrass & Corwin,39

1988). In recognition-memory research, participants study a list of items and40

later see these items intermixed with new items. Their task is to decide for41

each item whether it was previously studied or not. The 2HT model assumes42

three latent states:43

• S1: Item is detected as having been previously studied44

• S2: Item is detected as being new.45

• S3: The status of the item could not be determined46

S1 and S2 are memory-certainty states that can only be reached by studied47

and non-studied items, respectively, whereas the uncertainty state S3 can be48

reached by both item types. Each item type is associated with a processing49

subtree. Each process in the subtree can complete with one of two possible50

outcomes, represented by two edges, one for each outcome. The likelihood51

of each of the two process outcomes is governed by a parameter assigned to52
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the respective edge.153

For a studied item, participants first attempt to recognize the item, which54

succeeds with probability DO and fails with probability 1−DO. In the former55

case, participants enter state S1 and respond “old”. In the latter case, they56

enter the uncertainty state S3, which in turn triggers a guessing process.57

With probability g, the item is guessed as having been previously studied,58

resulting in an “old” response. With probability 1 − g, the items is instead59

guessed as being absent from the study list, leading to a “new” response. For60

a new item, participants again attempt to recognize the item, but according61

to the model, they cannot succeed in recognizing it. Instead, with probability62

DN , participants can sometimes infer that the item is new, based on, for63

example, its overall dissimilarity from the studied items (e.g., Mewhort &64

Johns, 2000) or memorability expectations that were not met (e.g., Strack &65

Bless, 1994). A successful inference of this kind, which corresponds to state66

S2, leads to the response “new”. If participants cannot infer a test item’s true67

status, they enter the uncertainty state S3 and the same guessing process68

as described for old items is assumed to operate. Based on participants’69

recognition judgments, we can estimate the 2HT model’s parameters and70

test some of its properties (e.g., Dube & Rotello, 2012; Kellen & Klauer,71

2014, 2015; Kellen, Singmann, Vogt, & Klauer, 2015; Province & Rouder,72

2012).73

Although not as ubiquitous as response-time analyses, MPT models such74

as the 2HT model have been found useful in an enormous range of psycho-75

logical inquiries (for reviews, see Batchelder & Riefer, 1999; Erdfelder et76

1The two possible outcomes associated with each process are often referred to as “suc-
cess” and “failure”, respectively. This nomenclature is intuitive in some cases; e.g., suc-
ceeding/failing to retrieve an item from memory, but it is completely arbitrary in others;
e.g., when referring to guessing processes.
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Figure 1: 2HT Model (“Detect-Guess” Variant). The rectangles indicate manifest states
(i.e., item type and responses), and the gray circles indicate the latent states S. The
double circles provide a reference for the outcome of the guessing process, terminating with
either an “old” or a “new” guess (denoted by + and −, respectively). The parameters
Do, Dn, and g refer to the probabilities of, in order, detecting an old item as old, a
new item as new, and guessing “old”. The λ parameters are exponential-rate parameters
governing the time for these processes to complete for each outcome. T NO and T NN

refer to truncated normal distributions governing encoding and response-execution times
for response “new” and “ old”, respectively. Note that only nodes with process parameters
attached to outgoing edges count as nodes in the technical sense detailed in Section 2.2.
(i.e., the root node and the node for S3).

al., 2009; Hütter & Klauer, 2016). In addition to the ongoing stream of77

proposals for new substantive models (e.g., Gawronski, Conway, Armstrong,78
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Friesdorf, & Hütter, 2016; Meissner & Rothermund, 2013), the current fruit-79

fulness of this model class is attested by its growing methodological toolbox:80

From hierarchical and mixed-model extensions (Klauer, 2010; Matzke, Dolan,81

Batchelder, & Wagenmakers, 2015), to sophisticated model-selection indices82

(Klauer & Kellen, 2015; Wu, Myung, & Batchelder, 2010), and inequality-83

constraint applications (Klauer, Singmann, & Kellen, 2015).84

But as useful as this model class may be, there are limits to what one can85

achieve on the basis of response frequencies alone. For instance, the charac-86

terization of the observed responses as a function of a mixture of latent states87

is ultimately silent about the duration of each of the processes that govern88

the access to these states, as well as about their exact order. Let us go back89

to the 2HT example: The tree structure of the model illustrated in Figure90

1 suggests that the guessing responses occur after a failed attempt to recog-91

nize the test item. We can refer to this as the “detect-guess” variant of the92

2HT. Alternatively, we can conceive 2HT models in which guessing occurs93

prior to any attempt to recognize the test item. For example, according to a94

“default-interventionist” variant of the 2HT shown in Figure 2, the partici-95

pant first guesses whether the test item is old or new.2 Only after this process96

is completed does the participant engage in a memory-retrieval process that97

— if successful — takes precedence over the previously established guess.98

Although the original detect-guess and the default-interventionist variants of99

the 2HT are very distinct in terms of mental-processing assumptions, they100

are formally equivalent in the sense that they yield the exact same range of101

predictions with the same parameters and parameter values.102

2In this respect, the default-interventionist variant resembles the diffusion model of
recognition memory (Dube, Starns, Rotello, & Ratcliff, 2012) in which a starting point for
the diffusion process, governing response biases, is set prior to any attempt to recognize
the test item.
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Figure 2: 2HT Model (“Default-Interventionist” Variant). The rectangles indicate overt
states (i.e., item type and responses), and the gray circles indicate the latent states S. The
double circles provide a reference for the outcome of the guessing process, terminating with
either an “old” or a “new” guess (denoted by + and −, respectively). The parameters
are described in the caption of Figure 1. Note that only nodes with process parameters
attached to outgoing edges count as nodes in the technical sense detailed in Section 2.2.
(i.e., the root node and the double circles).

In order to test alternative tree structures and estimate the duration of103

the different processes they postulate, we need to extend the MPT model104

so that it can provide a joint characterization of response frequencies and105

their respective times. We present a framework within which different distri-106
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butional assumptions can be explored and fully elaborate one model in this107

framework. The method can be applied to data from any identified MPT108

model if response times have been recorded along with the responses. It even109

extends the class of models that can be investigated because models that are110

not mathematically identified based on only the response frequencies can111

become so by the inclusion of the response times as illustrated below.112

In line with modern developments, the new method is hierarchical, which113

is advantageous in two different ways: First, it enables models to accommo-114

date the substantial heterogeneity that usually stems from individual differ-115

ences. These differences can be expressed in many ways such as accuracy,116

response bias, response speed, and speed-accuracy trade-offs, among others.117

Second, each participant’s parameter estimates are thereby informed by the118

other participants’ estimates, which is particularly valuable when the data119

per individual are sparse, and group-level estimates generalize across them120

(Katahira, 2016; Klauer, 2010). In terms of substantive psychological ap-121

plications, the proposed method can provide us with deeper insights into122

the architecture of processes in the modeled tasks, enabling the testing of123

theoretical predictions regarding the temporal characteristics of the involved124

processes, and the development of more diagnostic measurement models. In125

light of these contributions, the proposed method can be cast as a principled126

alternative to the currently dominant paradigm of simple diffusion-model127

accounts.128

1. Precursors and State of the Art129

Relatively direct precursors of the present approach are mixture models130

postulating probabilistic mixtures of response-time distributions (e.g., Fal-131

magne, 1965; Ollman, 1966; Yantis, Meyer, & Smith, 1991). Mixture models132
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are naturally related to MPT models if each processing-tree path terminating133

in an observable response category is considered as giving rise to a distinct134

path-specific response-time distribution. Another important precursor is the135

study of complex cognitive architectures that followed the seminal work of136

Sternberg (1969). For instance, Schweickert (1978) showed how the selective137

influencing of processes could be used to gain insights into their arrangement138

(e.g., are two processes serial or concurrent?) along an acyclical network (see139

also Dzhafarov & Schweickert, 1995; Goldstein & Fisher, 1991; Townsend &140

Nozawa, 1995; for a review, see Schweickert et al., 2012).141

Hu (2001) applied some of these earlier ideas in the context of the MPT142

model class, noting that any tree structure belonging to this class is a special143

type of acyclical network. Specifically, Hu investigated under what condi-144

tions it is possible to decompose mean response latency for each response145

category into mixtures of different path-specific means, which are further de-146

composed into additive components for each edge along the path, each such147

component describing the mean completion time of the process (and pro-148

cess outcome) associated with it. The inclusion of response times under this149

framework enabled Hu to compare two variants of the famous high-threshold150

source-memory model (Batchelder & Riefer, 1990) that postulate distinct151

relationships between the retrieval of item and source memory. Among the152

limitations of Hu’s approach is the fact that it only operates at the level of153

mean response times, ignoring higher-order moments of the response-time154

distributions. In addition, the method does not develop tools for statis-155

tical inference. Finally, it assumes that process-completion times and the156

probability of a process succeeding are independent, a highly implausible157

assumption.158

An approach based on mixture models was recently developed by Heck159
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and Erdfelder (2016). It is based on setting up a number of response-latency160

bins: For example, when using two bins the responses might be split into fast161

and slow responses based on the overall median. A new branching is then162

added at the end of each path of the MPT model, distributing the responses163

generated along that path into the different bins. The probabilities associated164

with each new binary branching are governed by a path-specific parameter165

L. For example, in the case of the 2HT, the “old” responses emerging from166

state S1 are mapped into ‘slow old’ and ‘fast old’ bins with probabilities LDO167

and 1 − LDO , respectively. The L parameters for the different paths order168

them in terms of their relative speed, using the overall median as benchmark.169

One key advantage of Heck and Erdfelder’s (2016) approach is that the170

binning of response times sidesteps the need to impose any parametric as-171

sumptions on the shape of the response-time distributions. Additionally, the172

models resulting from their approach are still members of the MPT model173

class as formalized by Hu and Batchelder (1994), which means that the en-174

tire methodological toolbox developed so far for MPTs can be applied with-175

out any modification. One limitation, however, is that the models resulting176

from this approach will often not be identified, with pathwise L parameters177

that cannot be uniquely estimated. Additional simplifying assumptions are178

needed to achieve identifiability: For example, for the 2HT model, Heck and179

Erdfelder assume that “old” responses to old items generated by a recogni-180

tion failure and an “old” guess (with probability [1 − DO]g) have the same181

response-time distribution as “old” responses to new items generated by a182

failure to infer that they are new and followed by an “old” guess (with prob-183

ability [1 − DN ]g). An analogous assumption is made for recognition and184

inference failures that are followed by a “new” guess. These simplifying as-185

sumptions allow for the L parameters of the corresponding paths to be set186
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equal, yielding an identifiable model.187

Further simplifying assumptions are usually required to link the path-188

specific L parameters to individual processes along the different paths. For189

example, for the 2HT model, the L parameter attached to the processing190

path (1 − DO)g is interpreted as capturing the relative speed of guessing191

“old” although in terms of processes, the failure to recognize (with probability192

1−DO) is also involved. Finally, it is difficult in this kind of model to integrate193

temporal differences across stimuli, responses, or experimental conditions194

due to encoding and/or response-execution processes. Such components are195

routinely accommodated by most response-time models usually in the form196

of an additive response-time component t0 (Luce, 1986). Nevertheless, where197

applicable the approach by Heck and Erdfelder (2016) is relatively easy to198

use and has the potential to provide valuable insights into the relative speed199

of cognitive processes involved in the generation of the observed responses.200

These advantages have been spelt out in a large application by Heck and201

Erdfelder (2017).202

The present approach pursues an alternative but complementary route203

by imposing specific parametric assumptions on the processes along with a204

serial interpretation of the processing paths as describing a succession or at205

least a cascade of processing steps (McClelland, 1979). In this latter respect,206

the present approach builds on the one by Hu (2001) and follows the intuition207

of many modelers in formulating MPT models. The downside of imposing208

parametric assumptions and a serial or cascade interpretation of processing209

paths is that the resulting method cannot be expected to be useful in situ-210

ations where there are substantive deviations from such assumptions. More211

generally speaking, parametric response-time models such as the diffusion212

model (Ratcliff & Rouder, 1998) are most interesting where they provide a213
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good description of observed data. Such an outcome implies that the model214

and its ensemble of assumptions provide one viable theoretical account of215

the data. A failure to describe given data is less interesting, inasmuch as216

it is often difficult to diagnose whether the failure goes back to a violation217

of central structural assumptions (e.g., the idea of a diffusion process or a218

particular MPT model architecture) or to a violation of ancillary parametric219

assumptions (e.g., the assumption of normally distributed residual encoding220

and response-execution times t0). For this reason, it is desirable to develop221

these models for different sets of parametric assumptions, but in the present222

manuscript we focus on only one such set.223

As will be shown below, the approach proposed here provides complete de-224

scriptions of the observed joint distribution of responses and response times,225

including accounts of the differences between individuals, and the correlations226

between the parameters governing responses and response times related to227

these individual differences. The methods presented here can be applied to228

any identifiable MPT model as well as to many MPT models that are not229

identified based on only the response frequencies without imposing further230

restrictions.231

2. Model Assumptions232

2.1. Overview233

In its simplest form, the present method builds on binary multinomial234

processing trees (only two branches go out from each node) in which each235

processing path represents a succession of processing stages for which process-236

completion times add up (Sternberg & Backus, 2015). An additional additive237

component summarizes encoding and response-execution times. The process-238

completion times of different processes are assumed to be independently dis-239
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tributed (i.e., conditional independence is assumed), and process-completion240

time distributions leading to the same outcome of the same process are as-241

sumed to be identical wherever that process occurs in the processing tree.242

For example, in the bottom part of Figure 1, the process of guessing “old”243

associated with parameter g in the tree for old items has two completion-time244

distributions depending upon whether it completes successfully or not. The245

same process occurs in the tree for new items, where it is assumed to have246

the same completion-time distributions.247

A complete model of response-time distributions needs specific parametric248

assumptions (Van Zandt, 2002), where limited data are available per partici-249

pant. Consider three sets of assumptions in increasing order of psychological250

plausibility and decreasing order of tractability:251

1. Each completion-time distribution is exponentially distributed with a252

separate rate parameter λ for each process outcome (see the bottom253

part of Figures 1 and 2). The distribution of encoding and response-254

execution times follows a truncated Gaussian distribution T N (trun-255

cated so that only positive values can occur). There are separate pa-256

rameters for the probabilities with which the processes complete with257

either of the two outcomes.258

2. Like Option 1, but each completion-time distribution follows a Wald259

distribution (first-passage time distribution of a Brownian motion with260

positive drift) with separate threshold and drift-rate parameters. The261

encoding and response-execution times follow an exponential distribu-262

tion.263

3. Each process and its joint distribution of outcomes and completion264

times is modeled by a diffusion model with a minimal set of parameters.265

There is a separate distributional assumption for the distribution of266
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encoding and response-execution times.267

Further options can of course be considered such as that processes com-268

plete as the outcome of a race between separate counters. The options listed269

here were motivated by models figuring importantly in the literature on270

response-time distributions. Option 1 is motivated by the ex-Gaussian dis-271

tribution often used for modeling response times (Matzke & Wagenmakers,272

2009), whereas Option 2 is motivated by the ex-Wald distribution proposed273

by Schwarz (2001). There are critical discussions of these distributions that274

focus on their empirical adequacy as well as on their psychological plausibil-275

ity (e.g., Burbeck & Luce, 1982; Matzke & Wagenmakers, 2009; Sternberg276

& Backus, 2015). Most of these criticisms are dealt with through Option277

3, motivated by the diffusion-model literature, which is however in all like-278

lihood the most difficult to implement mathematically.3 Note that Option279

1 models, permitting different exponential-rate parameters for each process280

outcome, accommodate reaction-time distributions that differ as a function281

of response category. This means that none of the models is bound to assume282

that responses and their respective times are independent, a (problematic)283

property known as separability (Marley & Colonius, 1992; see also Brown,284

Marley, & Heathcote, 2012).285

In the present manuscript, we develop a Bayesian hierarchical version of286

the Option 1 model with participants as random effects. Thus, each par-287

ticipant is associated with different parameters for the process probabilities288

and completion-time distributions. These parameters are constrained by a289

3Although in its simplest form, the proposed approach assumes sequential additive
stages along each processing path, it can easily accommodate technical parameters in any
given path (e.g., Klauer, Singmann, et al., 2015) to which no completion-time component is
attached. Furthermore, stages with overlapping or parallel processes can often be modeled
by concatenating two sequential stages and assigning only one common completion-time
distribution to them.
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prior distribution with population means and variance-covariance structure,290

parameters that are also estimated from the data. The resulting models pro-291

vide process-oriented accounts of the joint distribution of response categories292

and response times.293

2.2. The Person-Level Model for Responses and Response Times294

MPT models usually consist of several subtrees. For example, in the most295

simple 2HT model, there are two subtrees, one for trials involving studied296

items, and one for trials involving new items. Each tree has internal nodes,297

referred to simply as nodes in the following, and leaves. The leaves correspond298

to observable response categories such as “old” or “new”. Categories for299

different subtrees are, however, considered different categories. For example,300

the category “old” is also indexed by the subtree from which it stems and301

thus, to be precise, there are four response categories in the most simple 2HT302

model. The categories are mapped on actual responses such as left or right303

keypresses so that responses are a function of categories. For example, the304

two “old” response categories may be mapped on the left key, and the two305

“new” response categories on the right key. We consider only binary MPT306

models in which each node has two children. But note that non-binary MPT307

models can be transformed into binary MPT models (Hu & Batchelder, 1994;308

see Appendix for more details).309

To each node n in the tree, a process p = p(n) is attached with two310

outcomes. For example, p might be a guessing process with two outcomes311

‘guess old’ versus ‘guess new’. The two outcomes correspond to two edges312

going out from the node, and we will refer to an outcome o generically as the313

‘+’ outcome, o = +, or the ‘−’ outcome, o = −. Furthermore, let plus(o) be314

a function of the outcome with plus(+)=1 and plus(−)=0.315

Under Option 1, each process is characterized by three parameters: θp, λ
+
p ,316
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and λ−p . Parameter θp models the probability that the process p completes317

with the ‘+’ outcome with completion time governed by the exponential rate318

parameter λ+p . The probability of the ‘−’ outcome is given by 1 − θp with319

completion time described by parameter λ−p .320

We consider paths B from root to one of the leaves and represent them321

in terms of the internal nodes n traversed from root to leave along with the322

outcomes, + or −, attached to the edges along the path and thus, as a set323

of edges (n, o). The probability of path B is a product of the MPT model324

parameters, such as Do and g, and their complements, as encountered along325

the path. Thus,326

P (B) =
∏

(n,o)∈B

θ
plus(o)
p(n) (1− θp(n))1−plus(o). (1)

The response latency of a response generated along path B is the sum of327

an encoding and response-execution time δ, that follows a truncated normal328

distribution, and exponentially distributed process-completion times of the329

processes along that path. It is reasonable to assume that the encoding330

and response-execution time δ with mean γ and variance σ2 depends on the331

particular motor response r, r = 1, . . . , R, such as a left or right keypress4332

and thus, we permit its mean γ = γr to differ between different responses.333

Each path B ends in a category c = c(B), which is mapped on a response334

r = r(c). For a path B with only one node n, attached process p = p(n), and335

outcome o that leads to response r = r(c(B)), the distribution of response336

latency thus follows the familiar ex-Gaussian distribution with truncation at337

zero carried over from the truncated normal component:338

4For example, responses made with the right hand are often executed faster than left-
handed responses by persons with dominant right hand; frequent responses are often
executed faster than infrequent responses, etc. (see Voss, Voss & Klauer, 2010).
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f(t|B) = ex-Gauss≥0(t|λop, γr, σ2)

= λop exp

[
λop(γr +

1

2
λopσ

2 − t)
]{

Φ

(
t− γr − λopσ2

σ

)
− Φ

(−γr − λopσ2

σ

)}
×
(

1− Φ

(
−γr
σ

))−1
. (2)

For longer paths, the response latencies are the sum of several exponen-339

tials and a truncated normal. The sum of exponentials is distributed as what340

is known as a hypoexponential or generalized Erlang distribution (Johnson,341

Kotz, & Balakrishnan, 1994), which after convolution with the truncated342

normal yields the following density:5343

f(t|B) =
∑

(n,o)∈B

ex-Gauss≥0(t|λop(n), γr, σ2)
∏

(m,q)∈B,(m,q)6=(n,o)

λqp(m)

λqp(m) − λop(n)

 .

(3)

Hence, the joint distribution of categories c for a given subtree (such as344

the category “new” for old items) and response latencies t is characterized345

by346

f(c, t) =
∑

B:B ends in c

f(t|B)P (B). (4)

5This formula assumes that the same process and outcome is not attached to two
different nodes in the path. It needs to be modified if the same process is repeated along
a path.
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2.3. Priors and Hyperpriors347

2.3.1. Priors for process-related parameters.348

The parameters of the above person-level model, θp, λ
o
p, γr, and σ2, can349

assume different values for each individual s and thus, they carry the ad-350

ditional index s, which has so far been suppressed for ease of exposition.351

Like in Klauer (2010), the person-level MPT parameters θp,s ∈ (0, 1) are352

transformed via an inverse-probit link to the real line, yielding new param-353

eters αp,s = Φ−1(θp,s), where Φ is the cumulative distribution function of354

a standard normal distribution. Analogously, the exponential rate parame-355

ters λop,s ≥ 0 are transformed via a log link to the entire real line, yielding356

transformed parameter βo,p,s = log(λop,s).357

Furthermore, we decompose the person-level parameters into the sum of358

a population mean µ and (zero-centered) person-level deviations from that359

mean:360

αp,s = µ(α)
p + α′p,s,

βo,p,s = µ(β)
o,p + β′o,p,s, (5)

γr,s = µ(γ)
r + γ′r,s.

The parameters α and β characterize the accuracy and speed, respec-361

tively, of the processes specified in the MPT model. It is reasonable to362

assume that they can correlate across persons and thus, we assume that363

they are jointly distributed as a multivariate normal with variance-covariance364

structure Σ that is to be estimated from the data. Stacking the person-level365

deviations into vectors α′s = (α′p,s)(p=1,...,P ) and β′s = (β′o,p,s)(o=+,− ; p=1,...,P ),366

their prior distribution is given by367
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(
α′s

β′s

)
∼ N (03P ,Σ) , (6)

where 0n is a vector of zeros of length n and P is the number of different368

processes in the MPT model. This structure constrains the person-level369

deviations to follow a normal distribution with variances and covariances370

estimated from the data.371

Person-level statistical information is thereby aggregated in the popula-372

tion means µ(α) = (µ
(α)
p )(p=1,...,P ) and µ(β) = (µ

(β)
o,p )(o=−,+ ; p=1,...,P ) for each373

parameter. Variances across persons, and correlations between parameters374

for different processes, are estimated by Σ.375

2.3.2. Hyperpriors for process-related parameters.376

Hyperpriors are needed for the prior parameters µ(α), µ(β), and Σ. Like377

in Klauer (2010), the hyperprior for µ(α) is a normal distribution378

µ(α) ∼ N (0P , ε
−1IP )

where IP is the P × P identity matrix and the precision ε is set to one here379

and below for the analyses presented in this paper, implying a uniform prior380

distribution for the µ
(α)
p on the probability scale. The hyperpriors for pa-381

rameters µ
(β)
o,p are specified on the original (not log-transformed) scale and382

thus in terms of parameters exp(µ
(β)
o,p ) as independent Gamma distributions383

with shape and rate parameters set to 1.0 and 0.1 for the analyses presented384

below, implying a mean and variance of 10 and 100, respectively. A mean of385

10 was chosen because a mean exponential rate of 10 implies a mean process-386

completion time of 0.1 s or 100 ms, which seemed a reasonable prior setting387

for process-completion times for the applications considered in this paper. A388

variance of 100 ensures that the hyperprior is nevertheless reasonably unin-389
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formative.390

Following Klauer (2010), the hyperprior for Σ is a scaled Inverse-Wishart391

distribution with 3P + 1 degrees of freedoms, scale matrix I3P , and scale392

factors ξ(α) and ξ(β) for parameters α and β, respectively. As discussed by393

Gelman and Hill (2007, Chap. 13), setting the degrees of freedom to 3P + 1,394

that is, one plus the number of parameters in the multivariate normal distri-395

bution of Equation 6, has the effect of imposing a uniform prior distribution396

on the individual correlation coefficients implied by Σ, a reasonably unin-397

formative prior setting for the correlations. This distribution does, however,398

impose stronger constraints on the variances. To relax these constraints as399

well as to speed up convergence in Markov Chain Monte Carlo (MCMC)400

estimation, Gelman and Hill (2007) propose to use a scaled Inverse-Wishart401

distribution in which unidentified scale parameters ξ are introduced. Details402

are described in the Appendix.403

2.3.3. Priors and hyperpriors for encoding and response-execution times.404

The person-level model describes the encoding and response-execution405

times δ in terms of person-level means γr,s and variances σ2
s . It is reasonable406

to assume that the γr,s pertaining to different responses are correlated across407

persons. Thus, we assume a multivariate normal distribution with popula-408

tion means µ
(γ)
r and variance-covariance matrix Γ as prior. The hyperpriors409

for µ
(γ)
r are again independent normal distributions with zero mean. For the410

application reported below, we chose a variance of 10 for these hyperpriors,411

which for response latencies in the range of at most a few seconds seemed to412

be a reasonably uninformative choice for the variance of person-level mean413

values, especially when considering that the variances of means are necessar-414

ily smaller than variances for individual latencies. The hyperprior for Γ is415

the above-discussed scaled Inverse-Wishart distribution with R + 1 degrees416
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of freedom and scale matrix IR, R being the number of different responses417

that can occur.418

For the variances σ2
s , a scaled inverse chi-squared distribution with scale419

factor ω2 and df = 2 was chosen as prior, which again imposes few con-420

straints on the variances. For ω2, an improper uninformative prior was cho-421

sen, p(ω2) ∝ 1
ω2 . The posterior estimate of population-level parameter ω2

422

provides an overall estimate of the residual variance in response latencies423

that is not accounted for by the model.424

3. Algorithm425

The resulting model does not fall into the scope of standard software for426

MCMC estimation such as JAGS (Plummer, 2003), primarily because the427

kernel density in Equation 3 is not implemented in such software (but see428

Annis, Miller, & Palmeri, 2017). We devised a Gibbs sampler, more precisely429

a Metropolis-within-Gibbs sampler, for fitting the model that uses three steps430

of data augmentation.6 The first two steps of data augmentation constitute431

an adaptation of the approach by Albert and Chib (1993) to replace observed432

categorical responses by an underlying Gaussian structure tailored to the433

special structure of multinomial processing trees (Klauer, 2010).434

The first step is to augment each observed category c by the path B along435

which it was generated. Let Bc be the set of paths B that end in category436

c. The probability that an observed category c and response latency t was437

generated by a specific member B of Bc is then given by438

p(B | c, t) =
p(B)f(t |B)∑

B′∈Bc p(B
′)f(t |B′)

, (7)

6Program (C++) scripts of this implementation calling the NAG library can be ob-
tained from the first author.
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where p(B) and f(t |B) are given by Equations 1 and 3, respectively. Thus,439

the observed data of each trial can be augmented given the person-level pa-440

rameters by sampling a path B from Bc based on a multinomial distribution441

with the above p(B | c, t) as parameters.442

The second step of data augmentation is illustrated in Figure 3. For each443

trial from each subtree of the model administered to person s, values zn,s of444

latent normal variables Zn,s are sampled for each node n of the subtree, given445

the person-level parameters αs and the path B sampled in the first step. The446

zn,s are sampled from normal distributions with means αp(n),s = Φ−1(θp(n),s)447

and variance one. For (n, o) in B, the Zn,s variable is truncated from below448

at zero with Z ≥ 0 for the + outcome, o = +, and truncated at zero from449

above with Z < 0 for the − outcome, o = − (Albert & Chib, 1993). For450

edges in the subtree but not on the path B, the Z variate is not truncated.7451

The helpful aspect of this double data augmentation, by paths B and Z452

variates, is that it allows us to estimate the person-level parameters α as in453

a standard hierarchical linear model in a Bayesian framework as elaborated454

in the Appendix.455

The third step of data augmentation is also illustrated in Figure 3. For456

each trial from each subtree of the model administered to person s, latent457

process-completion times τ on,s are generated for each edge (n, o) of the sub-458

tree along with residual encoding and motor-execution component δr(c(B)),s,459

given the person-level parameters αs, βs, γs, and σs as well as the path B460

sampled for the trial on the basis of the category c and the response latency461

7As discussed by Klauer (2010), these non-constrained Z variates seem redundant.
Leaving them out, the number of such variates is, however, itself a random variable that
takes on different values in each cycle of the resulting sampler, which in consequence would
no longer be a Gibbs sampler. In consequence, the strong convergence results known for
the MCMC sampler (Gill, 2008, Chap. 9) do no longer apply, and a new theoretical
foundation would be required to justify the algorithm without the unconstrained Z.
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S1

S3

Studied
Item

P (Z1) ≥ 0
“old”

P (Z1) < 0

“old”

“new”

+

−

P (Z2) ≥ 0

P (Z2) < 0

Data Augmentation: Second Step

For a given response “old” to a studied item with latency t:

S1

S3

Studied
Item

τ+DO
“old”

τ−DO

“old”

“new”

+

−

τ+g

τ−g

δO

δO

δN

Data Augmentation: Third Step

With t = τ−DO + τ+g + δO

Figure 3: Illustration of the second and third steps of data augmentation. The zigzag
arrows indicate the tree path that was sampled. In the second step of data augmentation
(upper panel), the multinomial probability parameters are encoded in terms of (truncated)
normal variates. In the third step, process completion times τ and encoding and response-
execution times δ are added. For further details. see the body of text.

t that was observed on that trial. For edges (n, o) in the subtree, but not462

on the path B, the process-completion time is sampled from an exponential463



RT-MPTs 24

distribution with rate parameter λop(n),s = exp(βo,p,s). For links on the path464

B, sampling is constrained by the fact that the sums of τ -values and residual465

component δ along the path B have to add to the observed response latency466

(see Appendix for details). The helpful aspect of this data augmentation is467

that it allows us to estimate the exponential-rate parameters and the param-468

eters governing the encoding and response-execution times as though we had469

directly observed the process-completion times τ and residual components δ.470

With the observed and augmented data, most of the conditional distribu-471

tions of the Gibbs sampler turn out to stem from relatively standard families472

of distributions for which it is easy to generate random values. One excep-473

tion is the just-mentioned constrained sampling of process-completion times474

τ and residual component δ, which required a rejection-sampling step. A475

second exception is the sampling of the exponential-rate parameters λop,s,476

which required an adaptive rejection-sampling step (Gilks & Wild, 1992). A477

third exception concerns the sampling of parameters related to the encod-478

ing and response-execution times, which required Metropolis-Hastings steps.479

The joint model likelihood and details on the Gibbs sampler are provided in480

the Appendix.481

4. Identifiability and Model Checks482

4.1. Identifiability483

The resulting model is identifiable whenever the underlying MPT model484

is identified. From Equation 4, it is easy to see that the distribution of485

response latencies given category c is a mixture of hypoexponential distribu-486

tions convoluted with a truncated normal distribution with mixture weights487

given by P (B)∑
B′:B′ ends in c P (B′)

, where B is a path that ends in c. If the multino-488

mial model is identified, these mixture weights are identified (see Equation489
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1). Even without this extraneous identification stemming from the categor-490

ical responses, mixtures of members of parameterized families of continuous491

distributions are usually identified as shown by Titterington, Smith, and492

Makov (1985, Chap. 3). One way to see this is to note that expressing the493

n−th moments of the predicted response time distribution in terms of model494

parameters will usually yield as many non-redundant equations relating the495

model parameters to the moments as there are independent model parame-496

ters. Conversely, this implies that the model parameters are identified only497

from the higher-order moments of the RT distributions although they are498

further constrained by structural constraints as discussed below.499

The extraneous identification of the mixture weights even deals with a500

remaining problem known as the labeling problem: When members from the501

same family of distributions (such as normal distributions) are mixed, the502

different components are exchangeable. That is, the order in which the dif-503

ferent components are mixed makes no difference for the resulting mixture504

distribution. Hence, we can permute mixture weights and parameter val-505

ues of the associated mixture components without changing the probability506

distributions predicted by the model. This possibility is however preempted507

when mixture weights are already identified from the categorical data alone.508

These labeling problems again need to be considered where the underlying509

model is not identified. For example, in the basic 2HT model applied to data510

from a basic recognition-memory experiment, a model with parameters DN ,511

DO and g will not be identified when only categorical “old”/“new” responses512

are available. Mixtures of pathwise response-latency distributions, including513

mixture weights, will nevertheless usually be identified. Even the labeling514

problem will usually not pose a problem, because the paths give rise to515

distinct families of distributions as a function of the number of edges upon516
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them. For example, in the 2HTM, the “new” category for new items is517

reached via two paths, one with one edge labeled by DN , the other one with518

two edges, labeled 1−DN and 1−g, respectively. The first path generates an519

ex-Gaussian distribution, the second a hypoexponential distribution with two520

exponential components convoluted with a truncated normal distribution.521

The labeling problem arises only if (at least some of) the different mixture522

components stem from families of distributions with overlap (i.e., sharing523

some distributions) and if such components fall into this area of overlap.524

There is, however, no overlap between the ex-Gaussian family of distributions525

and the distribution of the sum of two exponential variates and a truncated526

Gaussian variate. It follows that the mixture is completely identified with527

the relabeling possibility ruled out and hence that the mixture weights DN528

and (1−DN)(1− g) are also identified in this case (and, mutatis mutandis,529

DO and [1−DO]g). Analogous arguments show that most RT-MPT models530

will be identified even if the underlying MPT model is not. It is, however,531

possible to construct special cases in which the resulting model still suffers532

from the labeling problem.533

How the observed reaction times are carved up into process-completion534

times and response-execution components depends in part on the distribu-535

tional assumptions. In this respect, RT-MPTs are no different from other536

process-oriented models of reaction times such as the diffusion model (Jones537

& Dzahafarov, 2014; Heathcote, Wagenmakers, & Brown, 2014). The issue538

is somewhat mitigated by the fact that the same process-completion compo-539

nents and response-execution components appear in different combinations540

in different processing paths of the model, imposing structural constraints on541

these components and associated parameters. Nevertheless, due to such is-542

sues, estimation of the model should be accompanied by assessments of model543
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fit as well as by selective-influence studies. In selective-influence studies ma-544

nipulations are implemented that are believed to affect only one process on545

theoretical grounds. The model is thereby validated not only in terms of fit,546

but also in terms of whether or not it maps the effects of the manipulation on547

only this process (Heathcote, Brown, & Wagenmakers, 2015; Klauer, Stahl,548

& Voss, 2012). Success in these validation steps will increase one’s confidence549

in the assumption that the parameter estimates are not unduly biased by in-550

appropriate distributional assumptions. We illustrate both validation steps551

in the application below.552

4.2. Model Checks553

One way to assess the adequacy of a model for describing a given dataset554

is to conduct posterior predictive model checks (for an overview, see Gelman555

& Shalizi, 2013). Given the data x, new data xpred can be generated from the556

predictive posterior distribution. Referring to the collection of person-level557

parameters as η = (η1, . . . ,ηS), such model checks are based on a goodness-558

of-fit quantity T (x,η) defined as a function of the (new or old) data and of559

the parameters such that it quantifies specific deviations of the data from560

the model predictions. The probability p of T (xpred,η) > T (x,η) is then561

estimated under the joint distribution of (xpred,η) given the observed data.562

The model is considered adequate with regard to the deviations quantified563

by T if p is not small. Specifically, for each of the retained parameter sets564

generated via the MCMC sampler, a new dataset of the same size, xpred, is565

generated from the distribution specified in Equation 4, and the estimate of566

p is simply the proportion of cases with T (xpred,η) > T (x,θ).567

One way to think of this procedure is by analogy to parametric Bootstrap568

assessments of model fit (Efron, 1982). The observed value of a test statistic569

is evaluated with reference to the distribution of the statistic generated from570
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the model given the current parameter estimates. For a critique of posterior571

predictive model checks, see, however, O’Hagan and Forster (2004, chap. 8),572

Bayarri and Berger (1998), among others.573

For the applications below, we routinely compute posterior predictive574

model checks based on three statistics, X1, X2, and X3. Statistics X1 and575

X2 assess the fit of the data to the mean frequencies per category and the576

mean latencies per category, respectively, using statistics of the Pearson’s577

chi-squared type,
∑ (O−E)2

E
. X3 is a summary measure of the fit of the joint578

distribution of categories and latencies based on the SSE statistic proposed579

by Van Zandt (2002). Let F (c, t | ηs) =
∫ t
0
f(c, x |ηs) dx be the defective580

cumulative distribution function of response latencies from category c given581

person s along with that person’s person-level parameters collected in ηs,582

where the joint density f is given by Equation 4. Let N be the total number583

of trials across all participants, and N(subtree(c), s) the number of trials584

administered to the s−th participant from the subtree to which category c585

belongs. Furthermore, let the observed response latencies from category c be586

ordered from smallest to largest such that tc,1 < tc,2 < . . . < tc,N(c), where587

N(c) is the observed frequency of category c across trials and participants.588

Then,589

X3 =
C∑
c

N(c)∑
j=1

(
j

N
−

S∑
s=1

N(subtree(c), s)

N
F (c, tj | ηs)

)2

.

5. Application590

We apply the method to the analysis of several datasets from recognition591

memory using the 2HT model.8 The datasets stem from three experiments592

8For all analyses reported below, we exclude extreme outliers in an individual’s distri-
bution of response latencies using Tukey’s outlier criterion (Clark-Carter, 2004, Chap. 9);
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by Arnold, Bröder, and Bayen (2015) and from two experiments by Dube et593

al. (2012) to which diffusion models have been fitted. These data contribute594

to an ongoing debate (Bröder & Schütz, 2009; Chen, Starns, & Rotello,595

2015; Dube & Rotello, 2012; Dube et al., 2012; Kellen & Klauer, 2014, 2015;596

Kellen, Klauer, & Bröder, 2013; Province & Rouder, 2012) about whether597

or not memory-based judgments in recognition memory are better described598

in terms of discrete memory states as in the 2HT model or in terms of a599

continuous familiarity signal as in signal detection models (Kellen & Klauer,600

in press). In particular, Dube et al. (2012) argued that diffusion models601

are dynamic extensions of standard signal-detection models, and they were602

found to fit the frequencies of old/new decisions and associated response603

latencies reasonably well in two experiments. Here, we evaluate whether the604

2HT model is also capable of providing a reasonable fit of these data with605

meaningful parameter values.606

Arnold et al. (2015) manipulated baserate of old and new items (believed607

to selectively influence guessing g; Experiment 1), the emphasis on accuracy608

versus speed (Experiment 2), and studied-item strength by presenting strong609

items several times in the study list and weak items only once (believed to610

selectively influence detection parameters DO). Baserate was also manipu-611

lated in five steps by Dube et al. (2012) along with studied-item strength.612

An overview of these datasets is provided in Table 1.613

We sampled posterior parameter distributions using the algorithm de-614

scribed above to generate four MCMC chains in parallel. Note that the615

2HT model is not identified based on only the categorical responses for the616

that is, trials with latencies 3.0 times the interquartile range below the first quartile or
above the third quartile in the individual’s distribution of latencies were excluded prior to
fitting the model
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datasets without baserate manipulation within participants. Convergence617

was monitored following the recommendations by Gelman, Carlin, Stern,618

and Rubin (2004, Chap. 11). Specifically, the R̂ statistic was computed for619

all model parameters (all population-level parameters and all scaled person-620

level parameters) with the exception of the unidentified scale parameters ξ.621

Sampling was continued until all of the R̂ statistics were smaller than 1.05.622

Subsequently, every 11th sample from each MCMC chain was retained for623

analyses until a total N of 20,000 retained samples was reached.624

5.1. Model Selection and Model Checks625

Table 1 also shows the deviance information criterion (DIC) and the626

Bayesian p values for the summary model-check statistics X1, X2, and X3627

for the “detect-guess” (DG) and “default-interventionist” (DI) variants of628

the 2HT model shown in Figures 1 and 2. Note that, for both models, we629

allowed response-execution times to differ for the “old” and the “new” re-630

sponses. Both models are equivalent in terms of their account of the response631

frequencies, but they imply different predicted response-latency distributions.632

As can be seen in Table A1, the DI variant of the 2HT model is associated633

with the smaller DIC value in four of five cases. Moreover, its model checks634

are generally satisfactory, especially when considering that X3 checks the635

entire joint distribution of responses and latencies. There is, however, some636

room for improvement for the Dube et al. (2012) data. Due to its superior637

performance, we will focus on the DI variant model in the discussion below.9638

To place the success of the DI model in perspective, Figure 4 compares639

its fit of Dube et al.’s (2012, Experiment 1) data with the fit obtained with a640

9We also fitted the same models with response-execution-times set equal across “old”
and “new” responses. As detailed in the Appendix (Table A1), this resulted in much larger
DIC values uniformly across datasets and for both the DG and the DI model.
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Table 1
Reanalyzed Data Sets, DIC values, and Model Checks (Posterior p Values) for the DG
and the DI Models

DG Variant DI Variant

Data S Manipulation ∆DIC X1 X2 X3 ∆DIC X1 X2 X3

— Arnold et al. (2015) —
Exp. 1 60 Baserate (b.p.) 22.12 .50 .47 .63 0.00 .50 .40 .66
Exp. 2 60 Speed-accuracy 0.00 .50 .33 .49 41.19 .48 .48 .40

tradeoff (b.p.)
Exp. 3 30 Target strength (w.p.) 23.55 .48 .65 .51 0.00 .50 .66 .45

— Dube et al. (2012) —
Exp. 1 21 Base-rate (w.p.) × 62.58 .0001 .01 .04 0.00 .29 .008 .11

target strength (w.p.)
Exp. 2 26 Base-rate (w.p.) × 81.40 <.0001 .04 .31 0.00 .0001 .01 .44

target strength (w.p.)

Note. DG = “Detect-Guess”; DI = “Default-Interventionist”; b.p. =
Between participants; w.p. = Within participants; S = Number of
participants in the dataset. ∆DIC = DIC difference from the lowest DIC.
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diffusion model under the maximum-likelihood parameter estimates reported641

by Dube et al. Specifically, Figure 4 shows the model fits to the response642

frequency data (panel “ROC”), and mean correct and false response latencies643

for the three kinds of items (strong studied-items, weak studied-items, and644

new items). As can be seen, both models capture the major trends in the645

data. The mean frequencies and latencies are generally well captured by646

the DI model’s posterior predictions, whereas the diffusion model encounters647

difficulties in accounting for false-response latencies to new items (see points648

for ”errors” in the lower right panel). The analogous figure for Dube et al.’s649

Experiment 2 shows the same patterns and is therefore omitted.650
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The superior fit of the DI variant of the 2HT model only serves as an ex-651

ample of the feasibility of the RT-MPT approach, not as a direct comparison652

against the diffusion model. One confounding factor is the difference in the653

number of parameters between the two models. The DI model requires more654

parameters per person than the diffusion model: the former needs to capture655

the outcomes and completion times of three separate two-outcomes processes656

(2 detection processes, one guessing process), whereas the latter model needs657

to characterize the outcomes and completion times of only one such pro-658

cess (the diffusion process). For a basic recognition-memory paradigm, the659

2HT models used here require, per process, three parameters (one parameter660

governing accuracy, two parameters governing completion times), and three661

parameters to model response-execution times (two for the means of old and662

new responses and one for the variance), for a total of twelve parameters per663

person. The diffusion model uses only seven parameters in this situation (al-664

though the model could be extended to include additional components such665

as drift criterion; see Starns, Ratcliff, & White, 2012). A formal comparison666

of the fits of the 2HT model and the diffusion model should therefore take667

differences in flexibility into account via an adequate quantification of model668

parsimony (e.g., Vandekerckhove, Matzke, & Wagenmakers, 2015).669

5.2. Parameter Estimates and Effects of Experimental Manipulations670

Tables 2 and 3 report the median posterior population-level parameters671

and their respective 95% highest-density intervals (HDI, reported in square672

brackets) for the data from Arnold et al. (2015) and Dube et al. (2012),673

respectively. The parameters governing process-completion times were re-674

transformed to the original millisecond scale for ease of interpretation.675

Consider the detection parameters. Detection failures (see rows/columns676

for D parameter under µ
(β)
− ) generally required more time than detection677
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successes (see µ
(β)
+ ), perhaps reflecting multiple retrieval attempts before an678

uncertainty state is entered. This result could be interpreted in light of679

the notion that successful detection emerges from a self-terminating process,680

whereas the failure to detect corresponds to an exhaustive process (for a681

general discussion, see Cox & Criss, 2017).682

The effects of studied-item strength. Moreover, detection parameters for683

studied items (DO, DS, and DW ) were sensitive to studied-item strength,684

as captured by their respective population means µ(α).10 There was, how-685

ever, little evidence for an effect of study strength on the process-completion686

times of the detection process, whatever its outcome (see µ
(β)
− and µ

(β)
+ ).687

This result is in line with previous studies showing that response speed-ups688

observed in study-strength manipulations can be largely attributed to differ-689

ences in the mixture of detection (S1 and S2) and uncertainty (S3) states (see690

Kellen et al., 2015; Province & Rouder, 2012), as reflected in the differences691

in µ(α) parameters for the detection parameters.692

The effects of baserate. The baserate manipulation had the expected effect693

of increasing µ(α) for the guessing parameters as the proportion of old items694

increased. This pattern was present in in both Arnold et al.’s (2015) Ex-695

periment 1 and Dube et al.’s (2012) datasets. The 95% HDI of the contrast696

between low and high base rate in the former experiment contains zero, how-697

ever (see the respective column ∆ in Table 2). Furthermore, in Dube et698

al.’s (2012) datasets, the process-completion time for the guessing process699

increases for guessing “new” (µ
(β)
− ) and decreases for guessing “old” (µ

(β)
+ )700

10Because Dube et al.’s (2012) studies always involved a within-participant manipulation
of study strength, in Table 3 we denote the detection probabilities for weak and strong
items by DW and DS , respectively. In the case of Arnold et al. (2015), only Experiment
3 included such a manipulation, but between subjects. We therefore denote all detection
probabilities as DO in Table 2.



RT-MPTs 36
T

a
b

le
2

P
a
ra
m
et
er

E
st
im

a
te
s
a
n
d
9
5
%

H
D
Is

fo
r
th
e
A
rn
o
ld

et
a
l.

(2
0
1
5
)
D
a
ta

E
x
p

.
1

E
x
p

.
2

E
x
p

.
3

P
a
r.

L
ow

H
ig

h
∆

A
cc

.
S

p
ee

d
∆

—
µ
(α

)
—

D
N

.5
9

[.
2
8,

.7
6]

.5
3

[.
0
7
,

.6
7]

[−
.2

0,
.5

5]
.4

3
[.

06
,

.5
7]

.4
5

[.
07

,
.5

9]
[−

.3
2,

.1
8
]

.7
9

[.
73

,
.8

5]
D
O

.3
4

[.
14

,
.5

2
]

.1
5

[.
0
0,

.5
8]

[−
.2

6,
.3

9]
.2

8
[.

13
,

.5
5]

.1
0

[.
00

,
.4

0]
[−

.0
4,

.4
3
]

.0
1

[.
00

,
.0

9]
;

.5
4

[.
4
3,

.6
8
]a

g
.3

8
[.

2
0,

.5
2]

.6
5

[.
3
0
,

.7
4]

[−
.4

4,
.0

7]
.5

5
[.

30
,

.6
5]

.5
6

[.
29

,
.6

4]
[−

.2
1,

.1
3
]

.5
8

[.
49

,
.6

6]

—
µ
(β

)
−

(m
s)

—
D
N

23
7

[1
8
7
,

28
7
]

3
0
2

[8
3
,

36
3
]

[−
14

4,
14

3]
46

5
[3

62
,

56
8]

83
[3

9,
10

9]
[2

85
,

4
83

]
18

7
[1

3
6,

22
4]

D
O

1
6
4

[4
9,

19
1
]

2
50

[9
7
,

2
9
1]

[−
15

7,
80

]
44

8
[3

77
,

53
2]

16
8

[8
4,

30
4]

[2
85

,
4
56

]
15

5
[1

2
7,

18
3]

;
13

8
[1

1
6,

15
9]
a

g
1
36

[4
9,

1
9
1]

97
[5

7,
2
45

]
[−

1
26

,
11

8]
49

[1
6,

81
]

45
[2

2,
90

]
[-

49
,

4
1]

5
5

[2
8
,

8
1]

—
µ
(β

)
+

(m
s)

—
D
N

70
[3

5,
1
1
8]

20
2

[3
9,

25
8
]

[−
19

6,
32

]
29

5
[1

29
,

38
5]

77
[

49
,

10
2
]

[5
0
,

3
07

]
8
1

[6
1
,

1
04

]
D
O

87
[3

4,
1
6
0]

5
9

[1
6,

16
6
]

[−
75

,
12

3]
16

8
[8

4,
30

5]
59

[2
0,

98
]

[1
7
,

2
51

]
56

[3
5,

83
];

8
4

[1
7
,

2
03

]a

g
17

1
[1

1
9
,

21
6
]

76
[3

7
,

28
7
]

[−
11

3,
15

0]
10

0
[5

5,
19

7]
69

[4
0,

10
6]

[-
27

,
1
13

]
8
8

[6
8
,

1
07

]

—
µ
(γ

)
(m

s)
—

N
ew

6
23

[5
97

,
6
50

]
68

4
[6

52
,

71
1
]

[−
97

,
−

21
]

77
3

[7
22

,
81

9]
55

1
[5

10
,

59
1]

[1
55

,
2
82

]
62

0
[5

9
3,

64
8]

O
ld

63
8

[6
13

,
66

3
]

59
3

[5
6
8
,

6
1
8]

[1
0,

79
]

71
6

[6
67

,
76

5]
51

7
[4

75
,

56
0
]

[1
3
4,

26
3]

5
83

[5
60

,
6
07

]

N
o
te
.

P
ar

.
=

P
ar

am
et

er
;

L
ow

=
L

ow
b
a
se

-r
at

e;
H

ig
h

=
H

ig
h

b
as

e-
ra

te
;

A
cc

.
=

A
cc

u
ra

cy
;

∆
=

95
%

H
D

I
o
f

th
e

gr
o
u

p
d

iff
er

en
ce

.
a
V

al
u

es
fo

r
w

ea
k

a
n

d
st

ro
n

g
st

u
d

ie
d

it
em

s,
re

sp
ec

ti
ve

ly
.



RT-MPTs 37

T
a
b

le
3

P
a
ra
m
et
er

E
st
im

a
te
s
a
n
d
9
5
%

H
D
Is

fo
r
th
e
D
u
be

a
l.

(2
0
1
2
)
D
a
ta

P
a
r.

D
N

D
W

D
S

g 1
g 2

g 3
g 4

g 5

—
E

x
p

.
1

—

µ
(α

)
.5

1
[.

38
,

.6
3
]

.3
5

[.
27

,
.4

3
]

.7
9

[.
74

,
.8

5]
.1

9
[.

14
,

.2
4]

.2
9

[.
23

,
.3

6]
.4

7
[.

3
8,

.5
7
]

.5
8

[.
5
0,

.6
5
]

.6
5

[.
58

,
.7

1]
∆

S
tr

o
n

g
v
s.

W
ea

k
:

[.
36

,
.5

2]
L

in
ea

r
T

re
n

d
:

[.
2
9,

.7
9
]

µ
(β

)
−

2
03

[1
58

,
2
45

]
1
89

[1
50

,
22

3
]

16
0

[1
10

,
21

2]
20

[1
0,

34
]

62
[3

2,
10

1
]

11
4

[6
8
,

1
62

]
1
18

[6
6,

17
9]

1
35

[8
5,

18
5]

∆
S

tr
o
n

g
v
s.

W
ea

k
:

[−
76

,
21

]
L

in
ea

r
T

re
n

d
:

[4
9,

13
2]

µ
(β

)
+

1
27

[9
8,

1
5
6]

1
07

[6
7,

15
7
]

7
8

[5
1,

10
7]

16
9

[1
15

,
22

6]
16

3
[1

01
,

22
3]

79
[4

0,
12

7]
3
3

[1
5
,

5
7]

20
[1

0,
35

]
∆

S
tr

o
n

g
v
s.

W
ea

k
:

[−
70

,
10

]
L

in
ea

r
T

re
n

d
:

[−
17

9,
−

91
]

—
E

x
p

.
2

—

µ
(α

)
.4

8
[.

3
4,

.6
1]

.2
1

[.
1
2
,

.3
0]

.7
2

[.
63

,
.8

0]
.2

1
[.

14
,

.2
9]

.2
8

[.
21

,
.3

6]
.4

4
[.

3
5,

.5
2
]

.5
7

[.
4
8,

.6
5
]

.6
3

[.
57

,
.7

0]
∆

S
tr

on
g

v
s.

W
ea

k
:

[.
42

,
.6

2]
L

in
ea

r
T

re
n

d
:

[.
32

,
.4

4]

µ
(β

)
−

24
0

[1
9
0,

29
4
]

20
1

[1
6
3,

2
44

]
2
32

[1
70

,
30

1]
24

[1
1,

43
]

57
[3

4,
82

]
1
37

[8
4,

19
8]

15
5

[1
0
9,

20
4]

2
08

[1
55

,
2
60

]
∆

S
tr

on
g

v
s.

W
ea

k
:

[−
19

,
87

]
L

in
ea

r
T

re
n

d
:

[1
0
5,

19
0]

µ
(β

)
+

1
56

[1
17

,
2
02

]
1
03

[5
8,

15
2
]

10
0

[7
2,

13
4]

17
7

[1
26

,
23

4]
21

0
[1

64
,

2
61

]
89

[5
2,

13
3]

5
1

[2
8
,

7
9]

1
8

[8
,

33
]

∆
S

tr
o
n

g
v
s.

W
ea

k
:

[−
50

,
44

]
L

in
ea

r
T

re
n

d
:

[−
1
90

,−
11

0]

N
o
te
.

P
ar

.
=

P
ar

am
et

er
;

∆
=

9
5
%

H
D

I
o
f

p
la

n
n

ed
co

n
tr

as
ts

,
D
w

=
ta

rg
et

d
et

ec
ti

on
fo

r
w

ea
k

st
u

d
ie

d
it

em
s,
D
s

=
ta

rg
et

d
et

ec
ti

o
n

fo
r

st
ro

n
g

st
u

d
ie

d
it

em
s.
µ
(γ

)
fo

r
n

ew
an

d
ol

d
re

sp
on

se
s

w
er

e,
re

sp
ec

ti
ve

ly
,

51
8

m
s

[4
9
0,

54
7]

an
d

55
4

m
s

[5
3
1,

57
8
]

in
E

x
p

.
1
;

53
4

m
s

[5
0
5,

5
63

]
a
n
d

55
7

m
s

[5
18

,5
94

]
in

E
x
p

.
2.



RT-MPTs 38

as the proportion of old items increases (from g1 to g5). This agrees well with701

the idea of the DI version of the 2HT model that guessing first suggests a702

default response and that a clear default is available to the extent to which703

the baserate departs from 50%. There is, however, no such trend in Exper-704

iment 1 by Arnold et al. (2015) in which a baserate manipulation was also705

implemented, perhaps because response-execution times for “old” and “new”706

responses and completion times for guessing “old” and “new” are strongly707

confounded in Arnold et al.’s design, making it difficult to estimate guessing708

completion-times with precision.709

The effects of speed-accuracy instructions. We did not have clear expecta-710

tions for the effects of the speed-accuracy instructions other than that we ex-711

pected an emphasis on speed to speed up response execution and perhaps de-712

tection processes, as participants might refrain from continuing their retrieval713

efforts after a certain period. Furthermore, an emphasis on speed should not714

increase the probability of detection (e.g., Ludwig & Davies, 2011).715

As can be seen in Table 2, an emphasis on accuracy (Arnold et al., 2015,716

Exp. 2) has relatively little effect on the accuracy parameters relative to an717

emphasis on speed. The only exception was a trend for better detection of718

studied items (µ(α) for DO) in Arnold et al.’s (2015) Experiment 2. This is719

in line with the absence of a significant effect of the manipulation on signal-720

detection sensitivity in traditional analyses (Arnold et al., 2015).721

However, an emphasis on speed led to a speed-up of all process-completion722

times as well as response execution relative to an emphasis on accuracy. For723

example, detection processes under accuracy instructions might be based on724

repeated retrieval attempts, which do not add much to accuracy over and725

above the first attempt, whereas fewer retrieval attempts might be performed726

under speed instructions. Only the completion times for the guessing pro-727
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cesses are not affected, in line with the idea that guessing always provides a728

fast first response proposal in the DI variant of the 2HT model.11729

Summary. Taken together, the DI model provides a reasonable fit of the730

data, and its parameters react meaningfully to the different experimental731

manipulations. This suggests that a discrete-state model is able to provide a732

process account of extant response-time data in recognition memory at least733

to a similar extent as the diffusion model does. Limitations of the RT-MPT734

account are considered in the General Discussion.735

5.3. Correlations736

One advantage of the present hierarchical approach is the possibility to737

model and estimate correlations between the person-level process param-738

eters across persons. To illustrate, we consider correlations between the739

person-level parameters β′+,p,s, averaged across processes p, and β′−,p,s, av-740

eraged across processes p based on the estimated variance-covariance ma-741

trix Σ. For Arnold et al.’s (2015) Experiments 1 to 3, they amounted to742

(95% HDIs in brackets), in order, 0.71 [0.38, 0.93], 0.82 [0.61, 0.96], and 0.35743

[−0.24, 0.81]. For Dube et al.’s (2012) Experiments 1 and 2, they amounted744

to 0.41 [−0.24, 0.81], and 0.79 [0.59, 0.92], respectively. Thus, there is some745

evidence for a general speed factor, such that persons completing processes746

with a ‘+’ outcome fast also tend to arrive at the ‘−’ outcome fast.747

We also probed for speed-accuracy trade-off between persons by comput-748

ing the correlations between the person-level parameters governing accuracy,749

α′p,s corresponding to the detection parameters DN and DO, averaged across750

11It is worth noting that our evidence for selective influence with Arnold et al.’s (2015)
Experiment 2 data is not replicated when fitting the data with the diffusion model. Arnold
et al. reported differences in the boundary-separation parameters (as expected) but also
in the drift rates for new items.
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the different detection processes on the one hand and the person-level pa-751

rameters governing the speed of responses β′+,p,s and β′−,p,s averaged across752

these same detection processes on the other hand. None of these correlations753

was substantial, however, ranging from −0.15 to 0.28, and all 95% HDIs754

contained zero. Thus, there is little evidence for speed-accuracy trade-offs755

between persons in these datasets.756

Based on the posterior distribution of the variance-covariance matrix Γ757

for response-execution parameters, the speed of executing “old” and “new”758

responses correlated positively across participants with correlations ranging759

from 0.35 to 0.91 across studies. None of the associated 95% HDIs contained760

the value zero.761

5.4. Precision of Estimates762

Another advantage of the present approach is that the precision of the763

estimation of the traditional MPT parameters governing the categorical data764

can be expected to increase as a side effect of including the response-time765

data. To see this, consider the population mean parameters µ
(α)
p for process p.766

The MCMC algorithm samples from the distribution of this parameter given767

the categorical frequency data C and the response-time data T , that is from768

P (µ
(α)
p | C, T ), and the estimate of µ

(α)
p is a measure of the central tendency769

of that distribution. The measurement precision can thus be quantified in770

terms of the variability of µ
(α)
p .771

The traditional Bayesian approach without response-time data (e.g.,772

Klauer, 2010) samples from P (µ
(α)
p | C). It is well known that the vari-773

ances of these distributions, P (µ
(α)
p | C, T ) and P (µ

(α)
p | C), are related via774

var(µ
(α)
p |C) = ET [var(µ

(α)
p |C, T )] + varT (E[µ

(α)
p |C, T ]), where ET and varT775

refer to taking the expectation and variance with respect to T (Gelman et776

al., 2004, p. 24). This implies that the variance of µ
(α)
p given C and T ,777
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var(µ
(α)
p |C, T ), can be expected to be smaller than the variance given only C778

by the variance of the expected value of µ
(α)
p given C and T, across repeated779

response-time measurements, T . In other words, including the response-time780

data can be expected to decrease the variability of the posterior distribution781

of µ
(α)
p .782

To illustrate, we computed the lengths of the HDI’s for the 16 µ
(α)
p pa-783

rameters in the two experiments by Dube et al. (2012) under the DI variant784

(see Tables 2 and 3). In these experiments, the 2HT model is also identified785

on the basis of only the categorical data, and we applied the hierarchical786

Bayesian approach on the basis of only the categorical data using exactly787

the same priors and hyperpriors as in the present approach to estimate these788

same parameters. HDIs based on categorical data and response times were789

shorter than those based on only the categorical data for 13 of the 16 param-790

eters. The mean saving in the length of the HDIs across the 16 parameters791

was 39%.792

6. Recovery Study793

Strong theoretical results on MCMC estimation guarantee that the pos-794

terior estimates will approach the true underlying values as the sample size795

increases. However, such results do not excuse researchers from investigat-796

ing the recoverability of parameters under any new modeling development797

(Heathcote, Brown, & Wagenmakers, 2015). Ideally, these recovery studies798

should be based on realistic datasets. We therefore conducted a recovery799

study based on the parameters of Dube et al.’s (2012) Experiment 1. We800

chose this dataset because it is the smallest one in terms of numbers of partic-801

ipants (S = 21) with a large number of process-related parameters (P = 8)802

and few trials per cell of the baserate × item-type design (between 12 and803
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48 trials per person). Recovery results in this framework are thereby likely804

to provide a lower baseline of the estimation accuracy to be expected.805

Based on the population-level parameters estimated for Dube et al.’s806

(2012) Experiment 1, we generated 2000 artificial datasets of the same size807

as the original data in terms of participants and numbers of trials per par-808

ticipant. Each dataset was then submitted to the present algorithm.809

Table 4 presents recovery results for the population-level process pa-810

rameters. It can be seen that the estimates tend to track the underlying811

values quite closely, but there is a tendency to overestimate small process-812

completion times. The 50% and 95% HDIs for each parameter appear to be813

reasonably well calibrated as quantifying estimation uncertainty inasmuch as814

the underlying value tends to fall into the respective interval with approxi-815

mately the nominal percentages. There are, however, again larger deviations816

for small process-completion times, and in general there is a tendency for the817

actual intervals to contain the true value somewhat less often than suggested818

by their nominal percentages even for large estimated process-completion819

times. The standard deviation of parameter values in the posterior sam-820

ple provides an adequate estimate of the standard deviation of the posterior821

median across simulated datasets.822

Table 5 presents the same information for the population-level standard823

deviations of the process parameters as estimated in Σ. Despite the small size824

of the underlying datasets, the model performs quite well in estimating the825

underlying standard deviations in the person-level process parameters and826

succeeds well in quantifying estimation uncertainty in terms of the HDIs.827

Again, the standard deviation of parameter values in the posterior sample828

provides a good estimate of the standard error of the posterior median across829

the board.830
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Table 4
Parameter Recovery Study: Population-level Means of Process
Parameters

Par. True Est. 50%a 95%a SEb SDc

— µ(α) —
DN .51 .51 46.35 92.85 0.06 0.06
DW .35 .36 48.50 94.40 0.04 0.04
DS .79 .79 49.30 95.35 0.03 0.03
g1 .21 .21 47.05 93.65 0.04 0.04
g2 .28 .28 51.70 94.45 0.03 0.04
g3 .44 .44 46.70 93.25 0.04 0.04
g4 .57 .57 49.25 94.90 0.04 0.04
g5 .63 .63 49.45 94.20 0.03 0.03

— µ
(β)
− —

DN 202.70 194.23 43.25 90.15 21.53 21.96
DW 189.20 184.63 47.05 92.45 15.95 16.44
DS 159.90 151.09 43.15 89.70 21.04 21.12
g1 19.94 34.82 10.70 60.50 7.83 8.97
g2 62.26 77.18 44.95 91.40 17.84 19.89
g3 114.30 118.46 51.50 95.20 20.66 22.42
g4 117.80 126.89 49.80 95.05 26.46 28.17
g5 134.70 139.46 49.40 94.40 23.09 23.79

— µ
(β)
+ —

DN 126.90 120.53 43.85 90.05 12.73 12.86
Dw 107.20 99.51 40.90 88.75 18.75 18.27
Ds 78.40 73.51 42.85 89.40 12.50 12.58
g1 168.60 174.91 46.95 93.35 29.57 29.40
g2 162.60 167.59 49.25 94.50 27.54 28.42
g3 79.10 93.72 46.95 92.70 21.11 22.61
g4 33.11 51.89 23.95 77.40 12.46 14.32
g5 20.46 36.24 10.50 64.30 8.32 9.96

Note. Par. = Parameter; Est. = posterior median (mean across simulated
datasets).
aPercent of simulated datasets with true value in the HDI of this
percentage.
bStandard error of posterior medians across simulated datasets. cPosterior
standard deviation (mean across simulated datasets).
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Table 5
Parameter Recovery Study: Standard Deviations of Person-Level
Process Parameters

Par. True Est. 50%a 95%a SEb SDc

— α′ —
DN 0.57 0.61 52.45 96.05 0.12 0.13
Dw 0.27 0.30 48.95 92.55 0.10 0.10
Ds 0.33 0.38 47.70 92.65 0.09 0.09
g1 0.48 0.51 50.85 94.10 0.12 0.13
g2 0.34 0.34 46.80 91.90 0.11 0.11
g3 0.28 0.26 51.10 91.85 0.10 0.10
g4 0.29 0.29 48.40 92.35 0.11 0.11
g5 0.19 0.20 45.75 95.55 0.09 0.10

— β′− —
DN 0.42 0.46 50.85 95.85 0.09 0.10
Dw 0.30 0.32 48.90 94.55 0.08 0.08
Ds 0.40 0.43 46.50 92.90 0.15 0.15
g1 1.09 0.86 30.70 82.70 0.27 0.26
g2 1.08 1.03 49.00 94.95 0.21 0.23
g3 0.70 0.72 52.10 96.70 0.16 0.17
g4 0.83 0.85 52.70 96.65 0.18 0.20
g5 0.56 0.58 52.20 95.25 0.16 0.17

— β′+ —
DN 0.24 0.26 46.70 94.80 0.11 0.12
Dw 0.52 0.52 47.70 92.50 0.19 0.19
Ds 0.60 0.65 50.75 95.00 0.15 0.16
g1 0.46 0.46 49.80 93.65 0.17 0.18
g2 0.53 0.54 51.55 92.40 0.17 0.18
g3 0.96 0.90 48.80 93.65 0.20 0.22
g4 1.21 1.01 33.75 85.75 0.27 0.27
g5 1.19 0.94 32.10 82.70 0.29 0.28

Note. Par. = Parameter; Est. = posterior median (mean across simulated
datasets).
aPercent of simulated datasets with true value in the HDI of this
percentage.
bStandard error of posterior medians across simulated datasets. cPosterior
standard deviation (mean across simulated datasets).
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Table 6 presents the same information for selected correlations, specifi-831

cally for the eight lowest, eight median, and eight highest correlations. Con-832

sidering the small number of persons across which these correlations are esti-833

mated and the small numbers of trials per cell of the design, the correlations834

are estimated reasonably well. The estimates faithfully track the sign of the835

underlying correlations. Perhaps not surprisingly, given the small sizes of836

the datasets, they underestimate the absolute sizes of the true correlations,837

and standard deviations of posterior medians across simulated datasets are838

systematically smaller than the posterior standard deviation of parameter839

values. Nevertheless, the HDIs quantify the estimation uncertainty reason-840

ably well.841

A reviewer suggested to provide information on model discrimination via842

simulation. Specifically, the concern was that the DI model might outper-843

form the DG model due to greater flexibility. To assess this possibility, we844

generated 100 more datasets from the DI model as well as 100 datasets from845

the DG model using the same parameters and procedures as just described,846

and fitted these datasets with the DG and the DI model, computing DIC847

for both models. When generating from the DI model, DIC was higher for848

the DG model than for the DI model for all 100 artificial datasets; when849

generating from the DG model, DIC was higher for the DI model than the850

DG model in 98 cases. The mean differences in DIC values in favor of the851

generating model were 379.02 and 197.79, respectively. Not surprisingly, the852

differences were significant in a t test across the 100 datasets in both cases:853

t = 40.34, df = 99, p < .001 and t = 20.11, df = 99, p < .001, respectively.854

These DIC differences indicate that none of the models is particularly apt855

in mimicking the other, providing additional support for the present results856

favoring the DI variant of the 2HT model.857
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Table 6
Parameter Recovery Study: Selected Correlations of Person-Level
Process Parameters

Pars. True Est. 50%a 95%a SEb SDc

— Eight Lowest Correlations —
α′Ds , β

′
g5,− −.53 −.23 37.95 95.45 0.17 0.28

α′Ds , β
′
g5,+

−.51 −.21 38.25 96.15 0.17 0.29
α′g1 , β

′
DN ,− −.50 −.33 50.05 94.95 0.17 0.22

α′g1 , β
′
g5,− −.50 −.30 50.25 96.60 0.17 0.24

β′g1,−, β
′
g5,+

−.48 −.20 41.90 94.90 0.18 0.28
α′g1 , β

′
Ds,− −.47 −.24 46.95 96.90 0.17 0.26

α′g3 , β
′
DN ,− −.47 −.23 48.10 95.75 0.18 0.27

β′g1,−, β
′
g5,− −.44 −.21 49.85 95.10 0.19 0.27

— Eight Median Correlations —
β′g5,−, β

′
Dw,+

.03 .04 59.20 99.30 0.20 0.29
α′Ds , β

′
g5,+

.03 .00 58.30 98.85 0.19 0.27
α′g5 , β

′
DN ,− .03 .09 60.25 99.35 0.18 0.29

β′g2,−, β
′
g1,+

.03 .02 65.70 99.50 0.18 0.28
α′g4 , β

′
g1,+

.04 .02 74.85 99.95 0.15 0.30
β′g1,−, β

′
Ds,+

.04 .01 55.40 97.75 0.21 0.27
α′g3 , β

′
Dw,+

.04 .00 68.90 99.65 0.17 0.30
β′g2,−, β

′
Ds,+

.04 .03 55.20 96.85 0.20 0.24

— Eight Largest Correlations —
β′DN ,−, β

′
g3,− .48 .35 55.95 97.40 0.17 0.22

β′Dw,−, β
′
g3,− .48 .34 58.50 98.15 0.16 0.23

α′Dw , β
′
Dw,− .48 .21 40.30 94.20 0.17 0.27

β′Dw,+, β
′
Ds,+

.51 .27 47.70 96.45 0.18 0.27
β′DN ,−, β

′
g5,− .53 .37 57.10 97.05 0.16 0.23

β′g3,−, β
′
g5,− .54 .35 51.65 95.70 0.17 0.23

α′g3 , β
′
g1,− .56 .21 28.60 92.90 0.17 0.29

β′DN ,−, β
′
Dw,− .60 .41 50.80 95.00 0.15 0.22

Note. Pars. = Parameters; Est. = posterior median (mean across simulated
datasets).
aPercent of simulated datasets with true value in the HDI of this
percentage.
bStandard error of posterior medians across simulated datasets. cPosterior
standard deviation (mean across simulated datasets).
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7. General Discussion858

The modeling tools currently available in researchers’ toolboxes constitute859

a major source of constraint for the type of experimental paradigms that are860

ultimately adopted. In the case of response-time modeling, the need for a861

large number of observations has been relaxed due to recent advances in862

hierarchical Bayesian methods, making them available to a large number863

of applications (e.g., Rouder, Province, Morey, Gomez, & Heathcote, 2015;864

Vandekerckhove, Tuerlinckx, & Lee, 2011). However, most response-time865

models like the prominent diffusion model (Ratcliff & Rouder, 1998) are866

restricted to two-choice paradigms (one exception being the family of linear-867

ballistic accumulator models; Brown & Heathcote, 2008), which limits their868

overall usefulness. No such limitations exist in the case of MPT models.869

The present work aims to enrich the current toolbox by proposing a870

method for combining two long-standing modeling traditions that are typi-871

cally seen as somewhat disjoint — process-oriented response-time modeling872

and multinomial-processing-tree modeling. As traditionally assumed in MPT873

models, the probability of observing a certain response corresponds to a mix-874

ture of different processing paths. We propose that the latencies associated875

with a given response can be captured by ascribing a completion-time dis-876

tribution to each process outcome included in the different paths that lead877

to that response, in addition to encoding and response-execution times. Be-878

cause our proposed method can be applied to any existing member of the879

MPT model class, it imposes no a priori constraints on the type of MPT880

paradigm that one can consider, as long as response times can be reliably881

recorded. In fact, the inclusion of response time might even lead to less con-882

strained model accounts, as parameters that were not identified can become883

so.884
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As an application example, we extended two variants of the well-known885

2HT model and tested their ability to capture recognition-memory data886

across a range of experimental manipulations. Interestingly, we found that887

a “default-interventionist” variant of the 2HT, in which the guessing process888

precedes the attempts to retrieve the item from memory, provided the best889

account of the datasets considered here. This tree structure deviates from890

the way the 2HT is typically conceptualized, namely in terms of the “detect-891

guess” variant. However, it should be emphasized that the two variants are892

indistinguishable on the basis of the typical categorical data collected and893

analyzed in recognition-memory experiments. The conceptualization of the894

model in terms of the “detect-guess” variant has therefore been a convention895

based on tacit and previously untestable assumptions about processing order.896

Future work is required to determine whether the processing-tree structure897

found to be most adequate here depends on the characteristics of the ex-898

perimental design, a likely possibility in any complex faculty such as human899

memory (e.g., Humphreys, Bain, & Pike, 1989; Meyer & Kieras, 1997). One900

indication in this direction may be the finding that the traditional “detect-901

guess” variant outperformed the “default-interventionist” variant in one of902

the analyzed datasets in which instructions emphasized either speed or ac-903

curacy. In any case, the present results demonstrate that by incorporating904

response times, one can overcome a long-standing inability to distinguish be-905

tween different processing tree structures (e.g., Kellen & Singmann, in press;906

Kellen, Singmann, & Klauer, 2014).907

The applications also illustrate two additional advantages of incorporating908

response times in the present framework: First, models that are not identifi-909

able on the basis of only categorical responses will typically be identified when910

response times are included via assumptions about process-completion dis-911
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tributions and distributions of encoding and response-execution components.912

For example, in the above applications, models with different detection pa-913

rameters DN and DO for detecting new and old items, respectively, could914

be fit even where this would not have been possible in the traditional MPT915

analysis. Second, the present method provides a principled alternative to the916

currently dominant diffusion-model analyses (e.g., Matzke & Wagenmakers,917

2009; Voss, Voss, & Lerche, 2015), at least in the many cases in which theory-918

driven and validated MPT models have been formulated for the accuracy919

data in the experimental paradigm under scrutiny. In such cases, RT-MPT920

models establish a principled competitor for process-oriented accounting of921

the data. RT-MPT models build on the MPT models that were successful922

in describing the accuracy data, now addressing the same range of data at923

the same level of detail as the diffusion-model analyses of them as illustrated924

here for recognition-memory paradigms.925

Note, however, that RT-MPT models and diffusion models differ in the926

breadth and depth of the process accounts they provide. RT-MPT models927

postulate that several processes are at work and aim at quantifying the dif-928

ferent processes’ relative contributions to observed responses and response929

times, conditional on the constellation of the processes’ interactions as coded930

in the tree structure. This is especially helpful in modeling paradigms in931

which multiple processes are likely involved. These processes are, however,932

not modeled in any more detail beyond what they contribute to the fre-933

quencies of responses and the observed response times. In contrast, dif-934

fusion models postulate one (diffusion) process, which they model in more935

depth. For example, the threshold parameter in diffusion models allows one936

to model speed-accuracy trade-offs in a parsimonious and compact way, and937

the starting-point parameter captures negative correlations between response938
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frequency and response time in a natural fashion. Options 2 and 3 discussed939

in the introduction for alternative distributional assumptions may enable one940

to graft some of this elegance onto response-time extensions of MPT models.941

The proposed approach is also likely to be valuable in areas in which942

the incorporation of response times into existing MPT models represents a943

major development. One such area of research is implicit social cognition —944

which includes prominent paradigms such as the Implicit Association Test945

or the Weapon Identification Task — where several MPT models captur-946

ing a diverse set of automatic and controlled processes have been proposed947

(e.g., Bishara & Payne, 2009; Meissner & Rothermund, 2013; for reviews,948

see Hütter, & Klauer, 2016; Sherman, Klauer, & Allen, 2010). Despite their949

merits, these models currently ignore response times, a key aspect of partici-950

pants’ judgments (e.g., decide as quickly as possible whether the object being951

held by a Black or White person is a gun) and a key aspect in traditional952

analyses of such data. Incorporating response times into the model analyses953

would allow the MPT literature on social-cognition paradigms to speak more954

directly to the vast social-cognition literature relying on response times as955

the major dependent variable. One important question that response times956

can help answering concerns the relative temporal sequencing of controlled957

detection and inhibition processes and their dominance over automatic pro-958

cesses. Another contribution is that the present method, by disentangling959

process-completion times, allows one to characterize the speed of the differ-960

ent modeled processes and to test theoretical predictions about their different961

speeds. For example, one defining characteristic of automatic processes such962

as the activation of response proposals based on stereotypic associations in963

the Implicit Association Task or the Weapon Identification Task is that they964

are believed to complete faster than the controlled detection and inhibition965
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processes that are also assumed to operate in these tasks. Efforts to incor-966

porate response times into some of these models from social cognition are967

ongoing.968

Finally, since its inception, the MPT model class has been framed as a way969

to obtain theoretically motivated and empirically validated decompositions970

of the major processes at work, which can be useful when characterizing971

individuals from different populations (Riefer & Batchelder, 1988). When972

used as a measurement tool, a MPT model can provide important insights,973

such as the attribution of a given cognitive deficit to differences in a specific974

parameter (e.g., Riefer, Knapp, Batchelder, Bamber, & Manifold, 2002). By975

providing simultaneous descriptions of accuracy and response-time data, the976

extended RT-MPT models obviously make use of more information than tra-977

ditional MPT models thereby likely enhancing the usefulness of such models978

as measurement tools. For example, the precision of the estimation of the979

traditional MPT parameters governing the categorical data can be expected980

to increase as a side effect of including the response-time data. As another981

simple example, the new RT-MPT method can accommodate differences be-982

tween persons in the relative emphasis an individual puts on accuracy at983

the expense of speed and vice versa — individual differences to which tradi-984

tional MPT models, relying on only the accuracy data, are vulnerable. For985

instance, it would now be possible to diagnose cognitive deficits that are986

revealed primarily in processing speed rather than processing accuracy and987

to pinpoint the processes most affected, addressing important issues in, for988

example, the study of cognitive aging (e.g., Kliegl, Mayr, & Krampe, 1994).989

To conclude, consider just one more area where measurement modeling990

using the RT-MPT method seems especially promising — the characteri-991

zation of workload capacity conceptualized in terms of processing speed as992
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a function of the number of concurrent stimuli (Miller, 1982). The assess-993

ment of individual workload capacity can often be challenging due to the994

need for a considerable number of trials per person, as well as the possi-995

bility of contamination by guessing-based responses (for an overview, see996

Gondan & Minakata, 2016). Alternatively, one could follow up on Ollman’s997

(1966) earlier work and build an RT-MPT that estimates the latencies of998

the stimulus-dependent and stimulus-independent (i.e., guessing) processes.999

Such an approach has the advantage of capturing information in the response-1000

time distributions in a small number of parameters, with workload capacity1001

being assessed by comparing process-latency parameters across conditions1002

(see Eidels, Donkin, Brown, & Heathcote, 2010). Moreover, the RT-MPT1003

method is hierarchical, which improves parameter estimation by allowing in-1004

dividual estimates to inform each other, an advantage of critical importance1005

when data are sparse (Katahira, 2016; Klauer, 2010).1006

Reaping these benefits rests on these models fitting the to-be-analyzed1007

data well and on successfully passing a validation program based on selective-1008

influence studies (Heathcote et al., 2015; Klauer et al., 2012) as tentatively1009

illustrated here for the response-time extension of the 2HT model. Selective-1010

influence studies implement experimental manipulations believed to affect1011

only one process in the model. The question then is whether each such1012

manipulation will be reflected primarily in the parameters for the targeted1013

process while leaving parameters pertaining to non-manipulated processes1014

unaffected. As already mentioned, one limitation of the present develop-1015

ment in this context is that like diffusion models, RT-MPTs rely on a set of1016

specific auxiliary assumptions about the distributions of process-completion1017

times and encoding and response-execution times. It is likely that cases ex-1018

ist in which these specific auxiliary assumptions do not even approximately1019
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describe the data-generating process, leading to misfit and failure of demon-1020

strating selective influence, even though the core structural and psychological1021

assumptions of the underlying MPT model as such may still be viable. We1022

hope to be able to relax this limitation to some extent through future work in1023

which we aim to develop the model for the alternative sets of distributional1024

assumptions outlined above (see Section 2.1.).1025
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Appendix1343

A.1. Non-Binary MPT Models1344

Models containing nodes with more than two children can be transformed1345

into binary MPT models. For that purpose, each node with more than two1346

children is replaced by a sequence of linked nodes each of which has only1347

two children. Hu and Batchelder (1994) show how to parameterize the links1348

to achieve equivalence between the original non-binary MPT model and the1349

resulting binary MPT model. To maintain equivalence of the response-time1350

predictions, the technical links connecting the series of binary nodes that re-1351

place a non-binary node should not be assigned a completion-time component1352

so that having such links in a processing path does not add to the response1353

times. This guarantees equivalence of the person-level models. In hierarchical1354

models, priors and hyperpriors also need to be adjusted to guarantee equiv-1355

alence for the entire hierarchical model following parameter transformations1356

(Gelman et al., 2004, Chap. 2; see also Heck & Wagenmakers, 2016).1357

A.2. The Likelihood of the Joint Distribution of Parameters and Data1358

On each trial x, administered to subject s = s(x), a category c = c(x)1359

with response r = r(c(x)) and latency t = t(x) is observed from one of the1360

subtrees of the models, denoted subtree(x). Subtree(x) is represented as the1361

set of edges (n, o) in the subtree; the set of nodes n in the subtree will be1362

referred to as nodes(subtree(x)).1363

The data observed for each trial x are augmented as described above1364

by the path Bx along which the category c(x) was reached, by z−variates1365

zx = (zn,x)n∈nodes(subtree(x)) for each node of the relevant subtree, and process-1366

completion times τx = (τ on,x)(n,o)∈subtree(x) for each edge of that subtree along1367

with the residual encoding and motor-execution component δx.1368
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Let 1C be an indicator function that takes on the value one if the condition1369

C is satisfied and the value zero otherwise. Let θ be a vector that stacks1370

all of the model parameters. For N trials x, the probability function for the1371

joint distribution of parameters and observed and augmented data is given1372

by:1373

p( (Bx, zx, τx, δx)x=1,...,N , (cx, tx)x=1,...,N ,θ)

∝
N∏
x=1

[ ∏
n∈nodes(subtree(x))

1√
2π
e−

1
2(zn,x−αp(n),s(x))

2


 ∏

(n,o)∈Bx:o=+

1{zn,x≥0}

 ∏
(n,o)∈Bx:o=−

1{zn,x<0}

 1{Bx ends in cx} ∏
(n,o)∈subtree(x)

λop(n),s(x)e
−λo

p(n),s(x)
τon,x

(√2πσ2
s(x)Φ(

γr(c(x)),s(x)
σs(x)

)

)−1

e
− 1

2

(δx−γr(c(x)),s(x))
2

σ2
s(x) 1{δx≥0}1{δx+

∑
(n,o)∈Bx τ

o
n,x=tx}

]
g(θ), (A1)

where g summarizes the prior and hyperprior distributions as unpacked be-1374

low. The likelihood is the product of five factors:1375

1. The product of the densities of the independent normal variables zn,x1376

with means αp,s = µ
(α)
p + α′p,s,1377

2. the product of indicator variables coding whether zx is consistent with1378

the path Bx and whether the path Bx is consistent with the observed1379

category cx,1380

3. exponential densities for the process-completion times τ on,x with rate1381

parameters λop,s = exp(µ
(β)
o,p + β′o,p,s) and the truncated normal density1382

for the residual encoding and motor-execution time δx with parameters1383
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γr,s = µ
(γ)
r + γ′r,s and σ2

s ,1384

4. an indicator function coding whether these times are consistent with1385

the observed response latency, and1386

5. the function g characterizing the prior and hyperprior distributions.1387

In this equation, we suppressed, as is usual for exponential variates, indicator1388

functions coding that the individual process-completion times must be non-1389

negative, but we will need this fact below where we consider the conditional1390

distribution of (τx, δx)x=1,...,N .1391

A.3. The Gibbs Sampler1392

The Gibbs sampler is an MCMC algorithm for sampling from the poste-1393

rior distribution of the model parameters given the data (cx, tx)x=1,...,N . It1394

cycles through blocks of parameters. For each block, one sample is drawn1395

from the conditional distribution of the parameters of the block given the1396

data and the remaining parameters. In what follows, we characterize the1397

conditional distributions involved and briefly describe how we sampled from1398

them for non-standard distributions.1399

A.3.1. The Augmented Data1400

The conditional distribution of (Bx, zx, τx, δx)x=1,...,N is sampled trial by1401

trial. For a given trial x, we first sample Bx from the conditional dis-1402

tribution of paths B with normal variates zx and process-completion and1403

encoding/response-execution times (τx, δx) integrated out, followed by sam-1404

pling from the conditional distribution of zx given Bx, the other parameters,1405

and the data, with (τ , δx) integrated out, followed by sampling from the con-1406

ditional distribution of (τx, δx)x=1,...,N given Bx, zx, the other parameters,1407

and the data.1408
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Like in Klauer (2010), it can be shown that the distribution of Bx end-1409

ing in cx is given by Equation 7 in the body of the paper. This defines a1410

multinomial distribution from which paths were sampled. Given a path Bx,1411

the normal variates zx can be sampled from truncated and non-truncated1412

normal distributions as described in the paper (Section “Algorithm”).1413

Consider next the conditional distribution of (τ , δx) given the path Bx,1414

zx, and the other parameters. For a given trial x and path Bx, the conditional1415

distribution of (τx, δx) is a function of the exponential rates λop(n),s(x) attached1416

to the edges (n, o) of the path as well as the parameters γr(c(x)),s(x) = µ
(γ)
r(c(x))+1417

γ′r(c(x)),s(x) and σs(x) governing the residual time δx.1418

Process-completion times τ on,x for edges (n, o) in subtree(x), but not on1419

the given path Bx can be sampled from the exponential distribution with1420

rate λop(n),s without further constraint (see also Footnote 7 in the body of1421

the paper). The process-completion times and the residual time along the1422

given path Bx must, however, add up to tx. This means that one of these1423

component times can be expressed in terms of the other times. Let (m, q)1424

be one of the edges (n, o) in Bx with minimum rate parameter: λqp(m),s(x) =1425

min(n,o)∈Bx λ
o
p(n),s(x). We sample ((τ on,x)(n,o)∈Bx , δx) in three steps.1426

First, we sample process-completion times τ on,x for edges other than (m, q)1427

from the conditional distribution with δx integrated out, followed by sampling1428

δx from the conditional distribution of δx given τx, all other parameters and1429

the data. Finally, τ qm,x is set to tx − δx −
∑

(n,o)∈Bx:(n,o) 6=(m,q) τ
o
n,x.1430

Collecting the other parameters and data in P , the conditional distribu-1431

tion p = p((τ on,x)(n,o)∈Bx:(n,o)6=(m,q), δx) | P) of ((τ on,x)(n,o)∈Bx:(n,o)6=(m,q), δx) given1432

P is characterized by:1433
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p ∝ λqp(m),s(x)e
−λq

p(m),s(x)
τqm,x

∏
(n,o)∈Bx:(n,o)6=(m,q)

λop(n),s(x)e
−λo

p(n),s(x)
τon,x

1{δx≥0}1{τqm,x≥0}e
− 1

2

(δx−γr(c(x)),s(x))
2

σ2
s(x)

∝
∏

(n,o)∈Bx:(n,o)6=(m,q)

(λop(n),s(x) − λ
q
p(m),s(x))e

−(λo
p(n),s(x)

−λq
p(m),s(x)

)τon,x

1{0≤δx≤tx−
∑

(n,o)∈B:(n,o)6=(m,q) τ
o
n,x}e

− 1
2

(δx−(γr(c(x)),s(x)+λ
q
p(m),s(x)

σ2
s(x)

))
2

σ2
s(x) ,

where components in the above product of exponential densities with rate1434

parameters λop(n),s(x) − λ
q
p(m),s(x) and λop(n),s(x) = λqp(m),s(x) should be replaced1435

by a constant. The second expression in the above characterization of1436

p is obtained by replacing τ qm,x by tx − δx −
∑

(n,o)∈Bx:(n,o)6=(m,q) τ
o
n,x and1437

simple manipulations. Integrating out δx, the conditional distribution of1438

(τ on,x)(n,o)∈Bx:(n,o)6=(m,q) given the other parameters and data is proportional1439

to:1440

p( (τ on,x)(n,o)∈Bx:(n,o)6=(m,q) | P) ∝∏
(n,o)∈Bx:(n,o)6=(m,q)

(λop(n),s(x) − λ
q
p(m),s(x))e

−(λo
p(n),s(x)

−λq
p(m),s(x)

)τon,x

[
Φ

(
tx −

∑
(n,o)∈B:(n,o)6=(m,q) τ

o
n,x − (γr(c(x)),s(x) + λqp(m),s(x)σ

2
s(x))

σs(x)

)

− Φ

(
−(γr(c(x)),s(x) + λqp(m),s(x)σ

2
s(x))

σs(x)

)]
1{tx−

∑
(n,o)∈B:(n,o)6=(m,q) τ

o
n,x≥0}.

To sample from this distribution, we sequentially sample the τ values1441

along the edges (n, o) of Bx other than (m, q) from the respective exponential1442

distribution with rate parameters λop(n),s(x) − λ
q
p(m),s(x) truncated from above1443
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by tx (or from a uniform distribution on [0, tx] in the event that λop(n),s(x) =1444

λqp(m),s(x)). If in this process, the sum of values already sampled exceeds1445

tx, we start afresh, amounting to rejection sampling to satisfy the constraint1446

encoded in the indicator function 1{tx−
∑

(n,o)∈B:(n,o)6=(m,q) τ
o
n,x≥0}. A complete set1447

of τ values for (n, o) in Bx with (n, o) 6= (m, q) emerging from this sampling1448

scheme follows a distribution with density proportional to the above (non-1449

normalized) density without the factor given by the difference of the two1450

cumulative normal distributions, which we refer to as Φ1 −Φ2. We can thus1451

“add” this factor in a final rejection-sampling step by drawing a random1452

value u from a uniform distribution, accepting the set of τ−values if1453

u <
Φ1 − Φ2

Φ

(
tx−(γr(c(x)),s(x)+λ

q
p(m),s(x)

σ2
s(x)

)

σs(x)

)
− Φ2

and starting anew otherwise.1454

Next, from the above expression for the conditional distribution of1455

((τ on,x)(n,o)∈Bx:(n,o) 6=(m,q), δx), it is easy to see that the conditional distribu-1456

tion of δx given the τ−values other than τ qm,x and given the other pa-1457

rameters and data is a doubly truncated normal distribution with mean1458

γr(c(x)),s(x) +λqp(m),s(x)σ
2
s(x), variance σ2

s(x), lower bound zero, and upper bound1459

tx−
∑

(n,o)∈B:(n,o) 6=(m,q) τ
o
n,x. Having sampled a new δx from this distribution,1460

the new τ qm,x is finally set to tx − δx −
∑

(n,o)∈B:(n,o)6=(m,q) τ
o
n,x.1461

A.3.2. The Person-Level Process Parameters1462

Sampling (α′s)s=1,...,S. Following Gelman and Hill (2007), we implement the1463

scaled inverse Wishart distribution for the variance-covariance matrix Σ of1464 (
α′s

β′s

)
by further decomposing α′p,s and β′o,p,s into α′p,s = ξ

(α)
p α′′p,s and β′o,p,s =1465
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ξ
(β)
o,p β′′o,p,s using the scale factors ξ =

(
ξ(α)

ξ(β)

)
. A multivariate normal with1466

zero mean and variance-covariance matrix Q is assumed as prior for the1467

unscaled person-level parameters

(
α′′s

β′′s

)
, and normal priors with mean 1.01468

and variance ε−1 are assumed for the scale factors. Σ is thereby decomposed1469

into1470

Σ = Diag (ξ)Q Diag (ξ) ,

where Diag is a diagonal matrix of dimension 3P × 3P with the elements1471

of the vector it takes as argument as diagonal elements. If Q follows the1472

Inverse-Wishart distribution (with the identity matrix as scale matrix and1473

3P +1 degrees of freedom), then Σ is distributed as a scaled Inverse-Wishart1474

distribution as desired. Reflecting this decomposition, we separately sample1475

from the conditional distributions of (α′′s )s=1,...,S and ξ(α).1476

Denote by T (p, s) the subset of pairs of nodes and trials, (n, x), with1477

trial x administered to participant s(x) = s and node n stemming from the1478

trial’s subtree, n ∈ subtree(x), such that process p is attached to the node,1479

p(n) = p. It follows:1480

p((α′′s )s=1,...,S | P) ∝
S∏
s=1

[ P∏
p=1

∏
(n,x)∈T (p,s)

1√
2π
e
− 1

2

(
zn,x−ξ(α)p α′′p,s−µ

(α)
p

)2]

e

− 1
2

α
′′
s

β′′s


t

Q−1

α
′′
s

β′′s



Partition Q−1 as follows:1481
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Q−1 =

 (Q−1)11 (Q−1)12

(Q−1)21 (Q−1)22


where the dimensions of (Q−1)11, (Q−1)12, and (Q−1)22 are, in order, P ×P ,1482

P × 2P , and 2P × 2P . Let N(p, s) be the number of pairs (n, x) in T (p, s).1483

Finally, let R = [(Q−1)11 + Diag
(

(N(p, s)(ξ
(α)
p )2)p=1,...,P

)
]−1. Standard ma-1484

nipulations show that the conditional distribution of α′′s for a given s is a1485

multivariate normal with mean1486

R




. . .

ξ
(α)
p

∑
(n,x)∈T (p,s)(zn,s,x − µp)

. . .

− (Q−1)12β
′′
s


and variance-covariance matrix R. Standard methods exist for sampling1487

from multivariate normal distributions.1488

The conditional distribution of ξ(α), on the other hand, is given by1489

p(ξ(α) | P) ∝
P∏
p=1

[ S∏
s=1

∏
(n,x)∈T (p,s)

1√
2π
e
− 1

2

(
zn,s,x−ξ(α)p α′′p,s−µ

(α)
p

)2]
e−

1
2
ε(ξ

(α)
p −1)2 ,

where ε is the prior precision. It is easy to see that the ξ
(α)
p thereby1490

follow independent normal distributions with posterior variance σ2
post =1491

(
∑S

s=1N(p, s)(α′′p,s)
2 + ε)−1 and mean σ2

post(
∑S

s=1 α
′′
p,s

∑
(n,x)∈T (p,s)(zn,s,x −1492

µp) + ε).1493

Sampling (β′s)s=1,...,S. Again, we sample separately from the conditional dis-1494

tribution of β′′ and from the conditional distribution of ξ(β). Consider β′′1495

first:1496
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p((β′′s )s=1...,S | P) ∝
S∏
s=1

[  P∏
p=1

∏
(n,x)∈T (p,s)

∏
o=−,+

exp(ξ(β)o,p β
′′
o,p,s)e

− exp(µ
(β)
o,p+ξ

(β)
o,pβ

′′
o,p,s)τ

o
n,x



e

− 1
2

α
′′
s

β′′s


t

Q−1

α
′′
s

β′′s

]
.

There is no easy way to sample from this distribution. We proceeded1497

by sampling from the conditional distribution of each individual β′′o,p,s given1498

the other β′′−parameters, and the other model parameters and data P . It1499

is not difficult to show that the density of this distribution is log-concave1500

throughout and hence, amenable to adaptive rejection sampling (Gilks &1501

Wild, 1992), which is the sampling method adopted.1502

The conditional distribution of ξ(β) on the other hand is proportional to:1503

p(ξ(β)|P) ∝
P∏
p=1

∏
o=−,+

e−
1
2
ε(ξ

(β)
o,p−1)2

 S∏
s=1

∏
(n,x)∈T (p,s)

exp(ξ(β)o,p β
′′
o,p,s)e

− exp(µ
(β)
o,p+ξ

(β)
o,pβ

′′
o,p,s)τ

o
n,x


Again, there is no easy way to sample from this distribution, and we1504

employed adaptive rejection sampling to sample from the conditional dis-1505

tribution of each ξ
(β)
o,p given the other parameters using adaptive rejection1506

sampling.1507

A.3.3. The Population-Level Process-Related Parameters1508

The conditional distribution of µ(α). Using standard manipulations, it is not1509

difficult to see that the µ
(α)
p follow independent normal distributions with1510

means1511
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∑S
s=1

∑
(n,x)∈T (p,s)(zn,x − ξ

(α)
p α′′p,s)∑S

s=1N(p, s) + ε

and variance (
∑S

s=1N(p, s) + ε)−1. Sampling proceeded from these normal1512

distributions.1513

Sampling µ(β). We sample the parameters µ(β) on the original (not log-1514

transformed) scale and thus in terms of parameters ρop = exp(µ
(β)
o,p ). The1515

conditional distribution of ρop given the other parameters and data, collected1516

in P is characterized by:1517

p(ρop | P) ∝ (ρop)
[
∑S
s=1N(p,s)+1]−1e

−ρop
(
[
∑S
s=1 exp(ξ

(β)
o,pβ

′′
o,p,s)

∑
(n,x)∈T (p,s) τ

o
n,x]+

1
10

)
,

which defines a Gamma distribution with shape parameters
∑S

s=1N(p, s) +1518

1 and rate parameter [
∑S

s=1 exp(ξ
(β)
o,p β′′o,p,s)

∑
(n,x)∈T (p,s) τ

o
n,x] + 1

10
. Sampling1519

proceeded from these Gamma distributions.1520

The conditional distribution of Q. The conditional distribution is an Inverse-1521

Wishart with S+3P +1 degrees of freedom and I+C as scale matrix, where1522

C is the sum of cross-products of the person-level deviations:1523

C =
S∑
s=1

(
α′′s

β′′s

)(
α′′s

β′′s

)t

.

A.3.4. The Person-Level Encoding and Response-Execution Parameters1524

Sampling γ′s. Like before, we implement the scaled Wishart distribution for1525

the variance-covariance matrix Γ of the person effect parameters γ′s by further1526

decomposing γ′r,s into γ′r,s = ξ
(γ)
r γ′′r,s using the scale factors ξ(γ). A multivari-1527

ate prior with zero mean and variance-covariance matrix S is assumed for1528
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the unscaled person-level parameters γ′′s , and as before, independent normal1529

priors with mean 1.0 and variance ε−1 are assumed for the scale factors.1530

Denote by U(r, s) the subset of observed trials x administered to partic-1531

ipant s(x) = s with response r = r(c(x)), and by Nr,s the number of such1532

trials. It follows:1533

p((γ′′s )s=1,...,S | P) ∝
S∏
s=1

[ R∏
r=1

(
Φ(
µ
(γ)
r + ξ

(γ)
r γ′′r,s

σs
)

)−Nr,s
∏

x∈U(r,s)

1√
2πσs

e
− 1

2

(δx−ξ(γ)r γ′′r,s−µ
(γ)
r )

2

σ2s

]
e−

1
2(γ′′s )

t
S−1(γ′′s )

If it were not for the factors

(
Φ(

µ
(γ)
r +ξ

(γ)
r γ′′p,s
σs

)

)−Nr,s
, the parameters γ′′s could1534

be sampled for each participant s from a multivariate normal analogous to1535

the sampling of α′′s . We sample from this multivariate distribution, using1536

it as the proposal distribution for a Metropolis-within-Gibbs step, in which1537

we accept the proposal γ∗s , if for a random value u drawn from a uniform1538

distribution1539

u ≤

∏R
r=1

(
Φ(

µ
(γ)
r +ξ

(γ)
r γ∗r,s
σs

)

)−Nr,s
∏R

r=1

(
Φ(

µ
(γ)
r +ξ

(γ)
r γ′′r,s
σs

)

)−Nr,s ,
and keep the old values γ′′s otherwise. Because the person-wise mean of1540

residual encoding and response-execution times µ
(γ)
r + ξ

(γ)
r γ′′r,s is usually large1541

relative to the residual variance, σs, the factors

(
Φ(

µ
(γ)
r +ξ

(γ)
r γ′′r,s
σs

)

)−1
are very1542

close to one both in the nominator and in the denominator of the above1543

fraction so that the fraction itself is close to one and most proposals are1544

accepted.1545
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The conditional distribution of ξ(γ), on the other hand, is given by1546

p(ξ(γ) | P) ∝
R∏
r=1

[ S∏
s=1

(
Φ(
µ
(γ)
r + ξ

(γ)
r γ′′r,s

σs
)

)−Nr,s
∏

x∈U(r,s)

1√
2πσs

e
− 1

2

(δx−ξ(γ)r γ′′r,s−µ
(γ)
r )

2

σ2s

]
e−

1
2
ε(ξ

(γ)
r −1)2 ,

where ε is the prior precision. If it were not for the factors involving Φ, the1547

parameters ξ(γ) could be sampled from independent normal distributions for1548

each response r analogous to parameters ξ(α). Like before, we sample pro-1549

posal values from these normal distributions and “add” the factors involving1550

the Φ through a Metropolis-within-Gibbs step.1551

The conditional distribution of (σ2
s)s=1,...,S. Let Ns be the number of trials x1552

administered to participant s. It is not difficult to see that the conditional1553

distribution of σ2
s is proportional to:1554

p(σ2
s | P) ∝

(
1

σ2
s

)[Ns+2
2

+1]

e
−Ns+2

2σ2s

∑
x:s(x)=s(δx−ξ(γ)r γ′′r,s−µ

(γ)
r )

2
+2ω2

Ns+2



∏
x:s(x)=s

(
Φ(
µ
(γ)
r + ξ

(γ)
r γ′′r,s

σs
)

)−1
,

where r = r(c(x)) is the response attached to trial x. If it were not1555

for the last factors involving Φ, σ2
s could thus be sampled from a scaled1556

inverse χ2−distribution with degrees of freedom Ns + 2 and scale factor1557 (∑
x:s(x)=s

(
δx−ξ(γ)r γ′′r,s−µ

(γ)
r

)2
+2ω2

Ns+2

)
. Again, we used this distribution to gen-1558

erate a proposal value and “add” the factors via a Metropolis-within-Gibbs1559

step.1560
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A.3.5. The Population-Level Encoding and Response-Execution Parameters1561

The conditional distribution of µ(γ). It is not difficult to see that the con-1562

ditional distribution of µ
(γ)
r is proportional to a normal distribution with1563

variance σ2
post = (

∑
s
Nr,s
σ2
s

+ 1
10

)−1, and mean σ2
post

∑
s

∑
x∈U(r,s)(δx−ξ

(γ)
r γ′′r,s)

σ2
s

up1564

to the factor
∏

s Φ(
µ
(γ)
r +ξ

(γ)
r γ′′r,s
σs

)−Nr,s . We sample from the normal distribution1565

to generate a proposal value and again “add” the factors via a Metropolis-1566

within-Gibbs step.1567

The conditional distribution of Γ. Like for the person-level parameters α′ and1568

β′, the decomposition of γ′r,s into γ′r,s = ξ
(γ)
r γ′′r,s implies that Γ is decomposed1569

into1570

Γ = Diag
(
ξ(γ)

)
S Diag

(
ξ(γ)

)
.

The conditional distribution of S is Inverse-Wishart with S +R+ 1 degrees1571

of freedom and I + C as scale matrix, where C is the sum of cross-products1572

of the person-level deviations:1573

C =
S∑
s=1

(γ′′s ) (γ′′s )t .

The conditional distribution of ω2. It is not difficult to see that the con-1574

ditional distribution of ω2 is a Gamma distribution with shape and rate1575

parameters equal to S×df
2

and df
2

∑
s

1
σ2
s
, respectively, where df = 2 for the1576

applications presented in the main body of the text.1577
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A.4. Model Selection for the Models with Equal Response-Execution Times1578

for Old and New Responses1579

Table A1 shows DIC values and the Model Checks for DG and DI Models1580

with response-execution times for old and new responses set equal for the1581

datasets analyzed in the body of the paper (see Table 1). As can be seen,1582

DIC is uniformly larger than for the same models with unequal response-1583

execution times for old and new responses. The model checks are often, but1584

not always associated with smaller p values. The relatively smaller impact1585

of setting equal the response-execution times on the model checks than on1586

the DIC values suggests that having separate parameters for old and new1587

responses was less important for fitting the mean frequencies and response1588

times averaged across participants – as also suggested by the fact that the1589

HDI’s of the µ
(γ)
r for old and new responses in most cases overlap (see Tables1590

2 and 3) – than for accounting for individual differences, perhaps due to1591

differences in handedness, between participants.1592
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Table A1
DIC values and Model Checks (Posterior p Values) for the DG and the DI
Models with Equal Response-Execution Times for the Old and the New Re-
sponse

DG Variant DI Variant

Data ∆DIC X1 X2 X3 ∆DIC X1 X2 X3

— Arnold et al. (2015) —
Exp. 1 267.70 .48 .27 .51 283.63 .44 .44 .28
Exp. 2 189.27 .49 .37 .37 203.62 .48 .29 .44
Exp. 3 243.99 .40 .57 .08 218.22 .43 .64 .05

— Dube et al. (2012) —
Exp. 1 157.80 <.0001 .02 .15 106.25 .27 .01 .23
Exp. 2 224.66 <.0001 .05 .48 133.31 .0001 .01 .62

Note. DG = “Detect-Guess”; DI = “Default-Interventionist”; ∆DIC = DIC
difference from the lowest DIC of the dataset from Table 1 in the body of
the text.
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